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Abstract— Shared memory is a common inter-processor com-
munication paradigm for on-chip multiprocessor SoC (MPSoC)
platforms. The latency overhead of switch-based interconnection
networks plays a critical role in shared memory MPSoC designs.
In this paper, we propose a directory-cache embedded switch
architecture with distributed shared cache and distributed shared
memory. It is able to reduce the number of home node cache
accesses, which results in a reduction in the inter-cache transfer
time and the total execution time. Simulation results verify that
the proposed methodology can improve performance substan-
tially over a design in which directory caches are not embedded
in the switches.

I. INTRODUCTION

Rapid advances of silicon and parallel processing technolo-

gies have made it possible to build multiprocessor systems-on-

chip (MPSoCs). In particular, packet-switched MPSoCs, [1],

which are called networks-on-chip (NoC) [2], are becoming

increasingly attractive platforms due to their better scalability,

higher data throughput, flexible IP reuse and by solutions

to clock skew problems associated with bus-based on-chip

interconnection schemes.

Distributed shared memory (DSM) [3] or distributed shared

cache (DSC) [4] is an architectural approach which allows

multiprocessors to support a single shared address space

that is implemented with physically distributed memory. A

DSM or DSC multiprocessor platform is also called non-

uniform memory access (NUMA) [5] or non-uniform cache

architecture (NUCA) [6], since the access time depends on

the physical location of a data word in memory or cache.

Coherence protocols allow such architectures to use caching in

order to take advantage of temporal and spatial locality without

changing the programmer’s model of memory or cache.

While interconnection networks provide basic mechanisms

for communicating, in the case of shared address space proces-

sors, additional hardware is required to keep multiple copies

of data consistent with each other. Specifically, if there exist

multiple copies of the data in different caches or memories,

we must ensure that different processors are using the freshest

data. Snoopy cache coherence is typically associated with

MPSoC systems based on broadcast interconnection networks

such as a bus or a ring. In bus-based interconnection systems,

all linked processors snoop on the bus for transactions and can

maintain cache coherence. However, this snooping protocol

[5] is not a scalable solution and it causes serious bus traffic

for cache coherence. An obvious solution to this problem is

to propagate coherence operations only to those processors

that must participate in the operations. This solution requires

us to keep track of which processors have copies of various

data values and also the relevant state information for them.

This state information is stored in a place called the directory,

and the cache coherence scheme based on such information is

called directory cache coherence. In a distributed shared mem-

ory MPSoC that connects all the processors through switches,

the directory cache coherence scheme can be applied. In the

conventional directory cache protocol, each directory resides

in a distributed shared memory bank or distributed L2 cache

bank and it contains entries for each memory or cache block.

An entry points to the exact locations of every cached copy of

a memory block and maintains its status for future reference.

The classical full-map directory scheme proposed by Censier

[7] uses an invalidation approach and allows for the existence

of multiple unmodified cached copies of the same block in

the system. However, in such a system, each directory with

distributed shared memory or cache is distributed among all

nodes in the system to provide a closer local memory or

local cache and several remote memories. While local memory

access latencies can be tolerated, the remote memory accesses

generated during the execution can reduce the performance of

applications.

In this paper, we present a method to mitigate the impact

of remote memory access latency. We propose a switch

architecture for low-latency cache coherency of a distributed

shared memory MPSoC platform which we denote as DCOS,

Directory Cache On a Switch. The proposed architecture was

applied to our proposed MPSoC platform that features packet

switched cache coherent NUMA and NUCA in an on-chip

system as shown in Figure 1. We have tested and evaluated this

architecture using the RSIM [8] distributed shared memory

MPSoC simulator. Some core parts of the simulator were

modified and new directory cache modules with a crossbar

switch were added in order to model our system. Simulations

from the SPLASH-2 benchmark suite [9] were performed. The

results show a substantial reduction of average read latency

and execution time compared to a platform in which directory

caches are not embedded into the switches.

II. SWITCH-BASED MPSOC WITH DCOS

Figure 1(a) shows a packet switched MPSoC platform with

on-chip shared memory. Figure 1 (b) shows the platform with
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Fig. 1. DCOS architecture based MPSoC platform with (a) on-chip shared memory and (b) off-chip shared memory.

off-chip shared memory. The proposed DCOS architecture was

implemented within each switch to reduce the cache-to-cache

data transfer time and the switches were connected through a

4×2 2D mesh topology. Wormhole routing was adopted as the

packet switching methodology. For our simulations, we used

the MIPS R10000 core model which is supported by RSIM

as shown in Figure 2. The main features of the MIPS R10000

include superscalar execution, out-of-order scheduling, register

renaming, static and dynamic branch prediction, and non-

blocking memory load and store operations. The first-level

cache can either be a write-through cache with a no-allocate

policy on writes, or a write-back cache with a write-allocate

policy. The second-level shared cache is a write back cache

with write-allocate. The directory cache coherence protocol we

adopted in our switch is the modified-shared-invalidate (MSI)

protocol [10]. The protocol was also implemented within each

distributed shared memory bank and distributed shared L2

cache to compare with the DCOS-based platform to verify

performance. The detailed DCOS MSI protocol and switch

architecture are shown in Figure 3 and Figure 4.
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Fig. 2. MIPS R10000 core block diagram.

III. DIRECTORY CACHE ON A SWITCH FOR SHARED L2$

AND SHARED MEMORY

A. DCOS Cache Coherence and Caching Flow

Systems for directory-based cache coherence combine dis-

tributed shared memory architectures with scalable cache

coherence mechanisms. We exploit a full-map directory cache

coherence protocol as our DCOS architecture. In this scheme,

the directory resides in main memory and contains entries for

each memory block. An entry points to the exact locations of

every cached copy of a memory block and maintains its status.

With this information, the directory preserves the coherence of

data in each distributed shared cache bank by sending directed

messages to known locations, avoiding expensive broadcasts.

Figure 3 describes a simple example of the data sharing flow

for DCOS cache coherence. For example, a presence bit of 1

denotes that cache #1 holds a copy of the memory block. The

state entry assigned to a memory block holds the current state

of the block: empty, shared, or modified/invalid.

Figure 3(a) presents the initial status of the DCOS directory

cache, which shows no data items are copied into caches or

memories. The directory entries are empty and therefore the

state tag shows empty, marked as ’E’. Figure 3(b) presents the

case where a data is shared with other caches and memories.

The bold arrow pointing from the shared memory bank to the

L1 cache of core 2 indicates the case where shared data is not

available in the shared L2 cache due to a write-miss. Figure

3(c) shows that a write request of one processor leads to the

invalidation of all other copies of the processor caches. The

new data value is stored in the caches or memories and the

entry state is changed to the modified state, marked as ’M’.

The bold arrow pointing from the shared memory bank to the

L1 cache of core 2 in Figure 3 also shows the direct data

invalidation case when the shared L2 cache doesn’t have the

data due to a write-miss.

B. Directory Cache Embedded Switch Architecture

Figure 4 shows the overall DCOS architecture block dia-

gram including our proposed directory caches. All the direc-

tory caches for both the shared memory bank and the shared

L2 cache bank are embedded within the crossbar switch.

The cache dir update and memory dir update inputs to the

directory cache module indicate the signals required for the

DCOS to update whenever the data states of the attached node
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Fig. 3. Full-map directory cache coherent MSI protocol for DCOS. (a)
Empty, (b) shared and (c) modified/invalid.

cache and node memory are changed. This information is sent

to the arbiter through the directory controller. This leads to

efficient routing up to the destination node. It reduces cache-

to-cache transfer time and results in an overall performance

improvement in terms of packet latency and execution time.

IV. SIMULATION ENVIRONMENT

We have used the RSIM simulator for distributed shared

memory multiprocessor systems. Some core parts of the sim-

ulator written in C++ were modified for a shared L2 cache

environment and the proposed directory cache module was

added to the default switch block. Table I summarizes the

parameters of the simulated platform.

The application programs used in our evaluations are FFT,

Radix, Ocean, and Barnes from the SPLASH-2 benchmark

suite. The input data sizes are shown in Table II.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we present and analyze the performance

results obtained through extensive simulations and evaluate the

impact of the DCOS architecture. The main objective of switch

directory caches is to reduce the number of cache-to-cache

transfers and the total execution time. Figure 5 shows that

both cache-to-cache transfer time and execution time of DCOS

based schemes were substantially reduced over the non-DCOS

scheme in terms of total consumed clock cycles. The parameter

we varied was the size of the shared memory directory cache

on a switch, which was varied from 512 to 2048 entries, while

TABLE I

SIMULATION PARAMETERS

MIPS R10000
Architecture model


512 / 1024 / 2048 entries
Shared memory directory size


32 entries
Shared L2$ directory bank size


Directory Cache in Switch


4
-
way
Interleaving


70 cycles (70ns)
Access time


Shared Memory 


15 cycles, pipelined
Hit time


Directed mapped, 128 KB
Write through


64 bytes
Line size


Shared L2 Cache Bank


32 bits
Channel width


500 MHz
Channel speed


250 MHz
Switch speed


8 bytes
Flit size


2D Mesh (4x2)
Topology


On
 -
Chip Switched  Networks


2 cycles
Hit time


2
Request ports 


Directed mapped, 32 KB
Write through


16 bytes
Line size


L1 Cache


32 entries
Memory queue size


2 integer arithmetic, 2 floating point
Functional units


64
Instruction Window


4
Max. fetch/retire rate


1 GHz
Speed


Processor
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2
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Directed mapped, 32 KB
Write through


16 bytes
Line size


L1 Cache


32 entries
Memory queue size


2 integer arithmetic, 2 floating point
Functional units


64
Instruction Window


4
Max. fetch/retire rate


1 GHz
Speed


Processor


TABLE II

BENCHMARK APPLICATIONS AND INPUT SIZES

Programs Input Sizes

FFT 32 k
Radix 1M Keys, 1024 Radix
Ocean 100 × 100 Grid

Barnes-Hut 2048 Bodies

fixing the cache size of the shared L2 directory at 32 entries.

As shown in Figure 5(a), the total execution time for each

benchmark application was reduced proportionally as the size

of the on-switch directory cache is increased. When comparing

the execution time of the non-DCOS to the DCOS for 2048

entries, the overheads for FFT, Radix, Ocean and Barnes were

reduced by 43.1%, 28.7%, 21.4%, and 27.9%, respectively.

In addition, as shown in Figure 5(b), the total cache-to-cache

transfer time overhead from home node to local node was

analyzed to determine the impact of the DCOS scheme. Cache-

to-cache transfer time also proportionally decreased as we

increase the size of the shared memory directory cache on a

switch. When compared, the cache-to-cache transfer time over-

head of non-DCOS to DCOS for 2048 entries on FFT, Radix,

Ocean and Barnes were reduced by 35.8%, 63.2%, 30.8%, and

43.2%, respectively. Based on these two performance metrics

on the four benchmark programs, a substantial performance

improvement is obtained with the proposed DCOS scheme.

VI. CONCLUSIONS

We have presented a novel directory-cache embedded switch

architecture with distributed shared cache and distributed

shared memory. This scheme is able to reduce the number of
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home node cache accesses, which results in the reduction in

inter-cache transfer time and total execution time. Simulation

results verify that the proposed methodology can improve

performance substantially over a platform in which directory

caches are not embedded in the switches.
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