
Hardware Channel Model for Ultra Wideband
Systems

Wen-Chih Kan and Gerald E. Sobelman
Department of Electrical and Computer Engineering, University of Minnesota

Minneapolis, MN 55455 USA
kanx0008@umn.edu
sobelman@umn.edu

Abstract—We present a digital hardware model for ultra
wideband channels. The system runs at 80 MHz on a Xilinx
Virtex-4 xc4vsx35 FPGA. High-speed arithmetic operations
including division, square root, powering and normal random
number generator are analyzed and developed for use as basic
components in the channel emulator. The design flow is based on
Matlab Simulink as the model builder, followed by Xilinx System
Generator to transform the Simulink model into a VHDL
description which can be synthesized and mapped onto the
FPGA device. Speed and area results are given for the
synthesized designs.

I. INTRODUCTION
Many hardware designs make use of FPGAs for rapid

prototyping and functional evaluation. In a communications
system, it is also important to account for the effects of the
channel in order to correctly characterize the overall system
performance. Ideally, the channel model can be described as a
digitally equivalent circuit which can then be mapped onto
hardware to allow for real-time testing of both a transceiver
and the channel together. Ultra wideband (UWB) channel
models [1] have been developed as Matlab code and approved
by the study group IEEE 802.15.SG3a as a method to evaluate
the physical layer performance. The complete functional
block diagram can be drawn as in Fig. 1. Reference [1] also
refers to [2] and [3] which deal with the time variability of
UWB channels.

Fig. 1 Channel model architecture

We have used Matlab Simulink v6.1 to implement our
UWB channel model emulator. Xilinx System Generator v7.1
was used to generate the VHDL model which was then used
in the Xilinx ISE 7.1i for mapping and place and route. The
device used for the implementation was a Xilinx Virtex-4
xc4vsx35. The numbers of slices required are obtained from
ISE’s Map Report. The maximum frequency values are from
ISE’s Post-Place & Route (pPnR) Static Timing Report. The
word length is assumed to be 24 bits throughout the

implementation. To generate this channel model on an FPGA,
some basic digital arithmetic operators have to be designed
and they must run at a very high speed in order for the channel
model to meet the throughput requirements specified in [2]
and [3].

Required digital arithmetic functions include a Gaussian
noise random number (GNRN) generator (GNRNG), a
division operation, a square-root computation (SQRT) and a
base-two powering function (2x). This paper is organized as
follows. Section II. outlines the design of the GNRNG. In
Section III., a radix-4 SRT division processor is discussed.
The SQRT architecture and implementation is presented in
Section IV. The final computational block, 2x, is described in
Section V. Section VI. presents results for the complete
channel model. The conclusions are given in Section VII.

II. GAUSSIAN NOISE RANDOM NUMBER GENERATOR
The most often used methods to generate GNRNs are

rejection-acceptance method, Box–Muller method, cumulative
distribution function conversion method and polar method.
Detailed comparison among those methods and their
respective drawbacks were discussed in [5]. Speed and the
quality of noise samples are the two main concerns in
designing a good GNRNG for our digital channel modelling.
Since all of the methods mentioned above produce GNRNs by
performing operations on uniform variables, throughput and
quality of the noise sample are difficult to obtain at the same
time. In contrast, Wallace proposes an algorithm using an
evolving pool of normal variables to generate additional
normal variables, [4] and [5].

The basic architecture of a Wallace GNRNG is shown in
Fig. 2 where a uniform random number generator is used to
produce addresses to read/write the RAMs which store the
transformed GNRNs. The transformation utilizes an addition
operation which is followed by a sum-of-squares correction
(SOSC). The key aspect, which allows this GNRN to run at
high speed is that the Wallace method does not require
complex arithmetic operations in order to generate new
samples. We have also made use of the fact that two locations
of a dual-port RAM can be read at the same time. Hence by
adding one more data path in the SOSC, the GNRNG’s speed
can be doubled. In Table 1 our GNRNG’s operating speed
from the Xilinx pPnR static timing report is shown. Since our
GNRNG produces two samples per clock, our GNRNG

generates 250 million samples per second. Also shown is the
logic utilization (LU) reported from Xilinx Map Report.

TABLE I
PPNR TIMING AND LU OF THE WALLACE GAUSSIAN NOISE RANDOM NUMBER

GENERATOR

Max. freq. Latency Slices Wallace
GNRNG 125.471MHz 1,051 clocks 1,629

Fig. 2 Basic architecture of Wallace GNRNG

III. RADIX-4 SRT DIVISION IMPLEMENTATION
SRT is a digit-recurrence algorithm used to compute the

division, as in (1), and square root.
 ri+1 = βri – qi+1y, (1)

where ri+1 is the (i+1)-th iterative remainder, β the quotient
radix, qi+1 the (i+1)-th quotient digit, and y the divisor. Two
main factors determine the operating speed of a division: the
number of recurrences and quotient selection function. Basic
SRT division has half or more of its iteration latency spent in
quotient selection [12].

Higher radix SRT division reduces the number of iterations
but its quotient selection logic becomes quite complex and
consumes lots of chip area. On the other hand, lower radix
division has simple quotient selection logic but the number of
iterations required is large. Reference [7] analyzed several
methods to perform the division operation and showed that
radix-4 SRT division [6] method provided good execution
time improvement with moderate increase in chip area. To
design a 16 (or more)-bit iterative SRT division running at
more than 100 MHz on FPGAs is non-trivial, if not
impossible at the present time. Therefore, a pipelined array
architecture is one way to achieve high-speed SRT division on
24-bit numbers, as shown in [8]. We chose to use radix-4 SRT
pipelined array division using the digit selection function
developed in [9]. To assure at least one digit value can be
chosen for current iteration while keeping the new remainder
bounded, it is necessary that
 Ud-1 ≥ Ld , (2)

where [Ld Ud] is the digit selection interval that if βri lies in
that interval, then the next quotient radix, qi+1, would be d. Ld
and Ud are defined below, as in (3) and (4) where ρ is the
redundancy factor. For minimally redundant radix-4
arithmetic, the value of ρ is 32 .

 Ld = (d – ρ)y, (3)

 Ud = (d + ρ)y, (4)

The architecture block diagram is provided in Fig. 3. The
Xilinx pPnR and LU results are shown in Table 2. Table 3 is
the quotient selection table developed by Kornerup for
minimally redundant radix-4 SRT division. However,
simplification on this selection logic into hard-decision type as
described below is needed to increase the operating frequency.
 qi+1 = -2 if βri < -1.5y, (5a)

 qi+1 = -1 if -1.5y ≤ βri < -0.5y, (5b)

 qi+1 = 0 if -0.5y ≤ βri < 0.5y, (5c)

 qi+1 = 1 if 0.5y ≤ βri < 1.5y, (5d)

 qi+1 = 2 if βri ≥ 1.5y, (5e)

From (5a)-(5e), we can observe that the digit selection
boundaries computation only involves shift and addition.
Furthermore, since the value of y is always in the range of [1,
2), the value of y)61(is always in the range of [1/6, 1/3) so
that only the most important three fractional bits of βri are
needed to be preserved in the selection function. With this
further simplification, the adders used in the selection logic
are only required to be 8 bits wide so that it can run at a very
high speed.

TABLE II
PPNR TIMING AND LU OF RADIX-4 SRT PIPELINED ARRAY DIVISION

Max. freq. Latency Slices Radix-4 SRT
division 133.156MHz 32 clocks 2,250

Fig. 3 Radix-4 SRT pipelined array division

TABLE III
QUOTIENT SELECTION TABLE BY KORNERUP, [9]

d = -2 -1 0 1 2
Ld(y) -(2⅔)y -(1⅔)y -(⅔)y (⅓)y (1⅓)y

Ud(y) -(1⅓)y -(⅓)y (⅔)y (1⅔)y (2⅔)y

IV. SQUARE ROOTING
The recurrence update equation for an SRT-based SQRT

function is (6). Since 11 <<−−iβ when i is large, (6) can be
approximated as (7) below.
 ri+1 = βri – qi+1 (2 qi+qi+1β

−ι−1) (6)

 ri+1 = βri - qi+1(2 qi) (7)

An SRT-based SQRT shares the same architecture as
division and thus, the complexity of SRT SQRT is similar to
its division counterpart. A modified Dijkstra SQRT is

presented in [10]. While this algorithm is radix-2, its
complexity is less than half of that of radix-4 SRT division
and thus lower than radix-4 SRT square root. Xilinx pPnR and
LU results of our implementation are in Table 4. The structure
of each iteration is illustrated in Fig. 4. Because our word
length is 24 bits, an array processor needs 12 such structures
cascaded together.

TABLE IV
PPNR TIMING AND LU OF DIJKSTRA SQRT

Max. freq. Latency Slices Dijkstra Square
Rooting 150.263MHz 48 clocks 1,038

Fig. 4 Dijkstra SQRT

V. FUNCTION 2X

The actual powering operation needed in the channel model
is base 10, i.e., 10x. On the other hand, base 2 powering is
easier to implement. The transformation from base 10 to base
2 is shown in Fig. 5. However, in our channel model generator
this transformation is not explicitly required since we can
incorporate this constant, log2(10), into the channel model
parameters which are pre-computed and stored as constants in
the ROM.

Fig. 5 Transformation from base 10 powering to base 2

A digital recurrence method is the primary approach used
for implementations of hardware powering [13]. However, it
exhibits the typical trade-off between the number of iterations
and the size of the radix that is common to all digit recurrence
algorithms. For the powering computation, each iteration
requires a multiplication and an addition and therefore, if the
digits are in radix-4 format, 7 stages are needed for a high
speed pipelined array design. Thus, the complexity would be
quite large. Alternatively, a Taylor series expansion is a
traditional mathematical method to approximate functions.

() ()
L+

−
+−+=)(

!2
)()()(0

''
2

0
0

'
00 xf

xx
xfxxxfxf (8)

Choosing the order of the approximation is to trade off the
size of the ROM and the number of multipliers/adders. We
built our 2x computation using the 3rd-order Taylor series
expansion based on the algorithm presented in [11]. Since for
3rd-order approximation, we have

 4m ≥ d, and (9)

 3m + k ≥ d (10)

where d is the word length, hence in our case, m = 6 and k = 6.
Interestingly, instead of having five ROM tables of depth of
64, we could choose to use only two ROM tables with each
having a depth of 64. This is because our function is powering
and its derivatives are simply the same function multiplied by a
constant. However, we need two more multipliers. The 3rd-
order Taylor series expansion 2x function approximation
architecture is shown in Fig. 6. Xilinx pPnR and LU results for
our implementation are given in Table 5.

TABLE V
PPNR TIMING AND LU OF FUNCTION 2X USING TAYLOR SERIES EXPANSION

Max. freq. Latency Slices Base 2
Powering 135.117MHz 14 clocks 1,973

Fig. 6 3rd-order Taylor series expansion of 2x

VI. COMPLETE HARDWARE CHANNEL MODEL
Reference [1] provides 4 different channel models for

verification of the performance of UWB physical layer
devices. There are seven key parameters that characterize the
models. They are cluster arrival rate, ray arrival rate, cluster
decay factor, ray decay factor, standard deviation of cluster
lognormal fading term, standard deviation of ray lognormal
fading term and the standard deviation of the lognormal
shadowing term, all of which were derived based on the
measurements reported in [14]. Since it is recommended that
the channel follows a lognormal distribution, a GNRNG
becomes a key part of this channel model simulator. In each
channel realization, the model computes a cluster arrival time
whenever this cluster arrival time isn’t greater than 10 times
the cluster decay factor. In one cluster, the model also
computes a ray arrival time whenever this ray arrival time
isn’t greater than 10 times its decay factor. Each cluster and
ray arrival time requires two GNRNs. Similarly, the signal
amplitude of each ray needs two GNRNs with each for cluster
lognormal fading and ray lognormal fading. To complete an
amplitude computation, a 10x function is needed since the
model is lognormal distributed.

Since each channel realization has to be compensated with
the lognormal shadowing term and the total energy has to be
normalized to unity, one additional GNRN, square root and
division are needed. As mentioned in [1], the time variability
of the channel has to follow the recommendation set forth in
[2] and [3] We can make use of that recommendation to
determine how fast the channel model simulator runs.
Reference [2] indicates that the channel has to change
completely from packet to packet. Therefore, if we assume the
average number of channel taps in a realization is one
thousand and the packet duration for a 220 Mbps throughput
application is 41.25µs, then the channel model hardware has
to produce one channel tap in 41.25 ns, which is equivalent to
a frequency of 24.24 MHz. Based on this speed, we find that
the basic computational building blocks have to run at a speed
of at least 100 MHz, which we have achieved. The complete
architectural diagram of the channel model is given in Fig. 1.
The implementation results from Xilinx pPnR and LU reports
are listed in Table 6.

TABLE VI
PPNR TIMING AND LU OF UWB CHANNEL MODEL SIMULATOR

Max. freq. Latency Slices Channel model
simulator 80.186MHz 1,089 clocks 7,747

VII. CONCLUSIONS
We built a complete UWB channel model emulator on a

Xilinx Virtex-4 FPGA which runs at speeds up to 80 MHz.
The logic utilization is 7,747 slices which consumes about
half of the resources of a xc4vsx35 device. This leaves room
for a transmitter and/or receiver to be implemented on the
same FPGA device. In the process of building the overall
channel emulator design, several high-speed arithmetic
circuits were developed as well. Specifically, a 250 MHz
Gaussian noise random number generator was developed.
Also, a pipelined array division unit using a radix-4 SRT
algorithm was created which runs at up to 133 MHz. A
pipelined array square root processor using the Dijkstra
algorithm runs at a speed of 150 MHz and also consumes

relatively few resources. A 135 MHz 2x processor using a 3rd-
order Taylor series expansion method was also implemented.
These individual arithmetic units may also prove to be useful
in other applications which require high-speed arithmetic
operators of those types.

ACKNOWLEDGMENT
We would like to thank Prof. Tzi-Dar Chiueh for valuable

discussions.

REFERENCES
[1] J. Foerster, “Channel Modelling Sub-committee Report Final,” IEEE

P802.15-02/490-SG3a.
[2] S. V. Schell, “Analysis of Time Variance of a UWB Propagation

Channel,” IEEE P802.15-02/452-SG3a.
[3] A. Molisch, “Time variance for UWB wireless channels,” IEEE

P802.15-02/461-SG3a.
[4] C. Wallace, “Fast pseudorandom generator for normal and exponential

variates,” ACM Tran. Math. Softw., vol. 22, no. 1, pp. 119-127, 1996.
[5] D.-U. Lee and et. al., “A Hardware Gaussian Niose Generator Using

the Wallace Method,” IEEE Tran. on VLSI System, vol. 13, no. 8, pp.
911-920, August 2005.

[6] D. L. Harris, S. F. Oberman, and M. A. Horowitz, “SRT Division
Architectures and Implementations,” IEEE Symp. Comp. Arith., pp.18-
25, July 1997.

[7] P. Soderquist and M. Lesser, “Division and Square Root Choosing the
Right Implementation,” IEEE Micro., vol. 17, no. 4, pp. 56-66, July
1997.

[8] X. Wang and B. E. Nelson, “Tradeoffs of Designing Floating-Point
Division and Square Root on Virtex FPGAs,” 11th IEEE Symp. F.-P.
Cust. Comp. Mach., April 2003.

[9] P. Kornerup, “Digital Selection for SRT Division and Square Root,”
IEEE Tran. On Computers, vol. 54, no. 3, pp. 294-303, March 2005.

[10] M. T. Tommiska, “Area-Efficient Implementation of a Fast Square
Root Algorithm,” IEEE Proc. Dev. Circ. and Systems, March 2000

[11] B. Lee and N. Burgess, “Some Results on Taylor-series Function
Approximation on FPGA,” 37th Asilomar Conference on Sig. Sys. and
Comps., Nov. 2003.

[12] E. Rice and R. Hughey, “A New Iterative Structure for Hardware
Division: the Parallel Paths Algorithm,” 16th IEEE Symp. Comp. Arith.,
2003

[13] J.-A. Pineiro and et al., “Algorithm and Architecture for Logarithm,
Exponential, and Powering Computation,” IEEE Trans. Comp., vol. 53,
no. 9, pp. 1085 – 1096, Sept. 2004.

[14] M. Pendergrass, “Emperically Based Statistical Ultra-Wideband
Channel Model,” IEEE P802.15-02/240-SG

