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Abstract—We present a digital hardware model for ultra 
wideband channels.  The system runs at 80 MHz on a Xilinx 
Virtex-4 xc4vsx35 FPGA. High-speed arithmetic operations 
including division, square root, powering and normal random 
number generator are analyzed and developed for use as basic 
components in the channel emulator. The design flow is based on 
Matlab Simulink as the model builder, followed by Xilinx System 
Generator to transform the Simulink model into a VHDL 
description which can be synthesized and mapped onto the 
FPGA device.  Speed and area results are given for the 
synthesized designs. 

I. INTRODUCTION 
Many hardware designs make use of FPGAs for rapid 

prototyping and functional evaluation. In a communications 
system, it is also important to account for the effects of the 
channel in order to correctly characterize the overall system 
performance.  Ideally, the channel model can be described as a 
digitally equivalent circuit which can then be mapped onto 
hardware to allow for real-time testing of both a transceiver 
and the channel together.  Ultra wideband (UWB) channel 
models [1] have been developed as Matlab code and approved 
by the study group IEEE 802.15.SG3a as a method to evaluate 
the physical layer performance.  The complete functional 
block diagram can be drawn as in Fig. 1. Reference [1] also 
refers to [2] and [3] which deal with the time variability of 
UWB channels. 

 
Fig. 1  Channel model architecture 

We have used Matlab Simulink v6.1 to implement our 
UWB channel model emulator. Xilinx System Generator v7.1 
was used to generate the VHDL model which was then used 
in the Xilinx ISE 7.1i for mapping and place and route. The 
device used for the implementation was a Xilinx Virtex-4 
xc4vsx35. The numbers of slices required are obtained from 
ISE’s Map Report. The maximum frequency values are from 
ISE’s Post-Place & Route (pPnR) Static Timing Report. The 
word length is assumed to be 24 bits throughout the 

implementation. To generate this channel model on an FPGA, 
some basic digital arithmetic operators have to be designed 
and they must run at a very high speed in order for the channel 
model to meet the throughput requirements specified in [2] 
and [3]. 

Required digital arithmetic functions include a Gaussian 
noise random number (GNRN) generator (GNRNG), a 
division operation, a square-root computation (SQRT) and a 
base-two powering function (2x). This paper is organized as 
follows. Section II. outlines the design of the GNRNG. In 
Section III., a radix-4 SRT division processor is discussed. 
The SQRT architecture and implementation is presented in 
Section IV. The final computational block, 2x, is described in 
Section V.  Section VI. presents results for the complete 
channel model.  The conclusions are given in Section VII. 

II. GAUSSIAN NOISE RANDOM NUMBER GENERATOR 
The most often used methods to generate GNRNs are 

rejection-acceptance method, Box–Muller method, cumulative 
distribution function conversion method and polar method. 
Detailed comparison among those methods and their 
respective drawbacks were discussed in [5]. Speed and the 
quality of noise samples are the two main concerns in 
designing a good GNRNG for our digital channel modelling. 
Since all of the methods mentioned above produce GNRNs by 
performing operations on uniform variables, throughput and 
quality of the noise sample are difficult to obtain at the same 
time. In contrast, Wallace proposes an algorithm using an 
evolving pool of normal variables to generate additional 
normal variables, [4] and [5]. 

The basic architecture of a Wallace GNRNG is shown in 
Fig. 2 where a uniform random number generator is used to 
produce addresses to read/write the RAMs which store the 
transformed GNRNs. The transformation utilizes an addition 
operation which is followed by a sum-of-squares correction 
(SOSC).  The key aspect, which allows this GNRN to run at 
high speed is that the Wallace method does not require 
complex arithmetic operations in order to generate new 
samples.  We have also made use of the fact that two locations 
of a dual-port RAM can be read at the same time. Hence by 
adding one more data path in the SOSC, the GNRNG’s speed 
can be doubled.  In Table 1 our GNRNG’s operating speed 
from the Xilinx pPnR static timing report is shown. Since our 
GNRNG produces two samples per clock, our GNRNG 



generates 250 million samples per second. Also shown is the 
logic utilization (LU) reported from Xilinx Map Report. 

 

TABLE I 
PPNR TIMING AND LU OF THE WALLACE GAUSSIAN NOISE RANDOM NUMBER 

GENERATOR 

Max. freq. Latency Slices Wallace 
GNRNG 125.471MHz 1,051 clocks 1,629 

 
Fig. 2  Basic architecture of Wallace GNRNG 

III. RADIX-4 SRT DIVISION IMPLEMENTATION 
SRT is a digit-recurrence algorithm used to compute the 

division, as in (1), and square root. 
 ri+1 = βri – qi+1y, (1) 

where ri+1 is the (i+1)-th iterative remainder, β the quotient 
radix, qi+1 the (i+1)-th quotient digit, and y the divisor. Two 
main factors determine the operating speed of a division: the 
number of recurrences and quotient selection function. Basic 
SRT division has half or more of its iteration latency spent in 
quotient selection [12]. 

Higher radix SRT division reduces the number of iterations 
but its quotient selection logic becomes quite complex and 
consumes lots of chip area. On the other hand, lower radix 
division has simple quotient selection logic but the number of 
iterations required is large. Reference [7] analyzed several 
methods to perform the division operation and showed that 
radix-4 SRT division [6] method provided good execution 
time improvement with moderate increase in chip area. To 
design a 16 (or more)-bit iterative SRT division running at 
more than 100 MHz on FPGAs is non-trivial, if not 
impossible at the present time. Therefore, a pipelined array 
architecture is one way to achieve high-speed SRT division on 
24-bit numbers, as shown in [8]. We chose to use radix-4 SRT 
pipelined array division using the digit selection function 
developed in [9]. To assure at least one digit value can be 
chosen for current iteration while keeping the new remainder 
bounded, it is necessary that  
 Ud-1 ≥  Ld , (2) 

where [Ld Ud] is the digit selection interval that if βri lies in 
that interval, then the next quotient radix, qi+1, would be d. Ld 
and Ud are defined below, as in (3) and (4) where ρ is the 
redundancy factor. For minimally redundant radix-4 
arithmetic, the value of ρ is 32 . 

 Ld = (d – ρ)y, (3) 

 Ud = (d + ρ)y, (4) 

The architecture block diagram is provided in Fig. 3. The 
Xilinx pPnR and LU results are shown in Table 2. Table 3 is 
the quotient selection table developed by Kornerup for 
minimally redundant radix-4 SRT division. However, 
simplification on this selection logic into hard-decision type as 
described below is needed to increase the operating frequency. 
 qi+1 = -2 if βri < -1.5y, (5a) 

 qi+1 = -1 if -1.5y ≤ βri < -0.5y, (5b) 

 qi+1 = 0 if -0.5y ≤ βri < 0.5y, (5c) 

 qi+1 = 1 if 0.5y ≤ βri < 1.5y, (5d) 

 qi+1 = 2 if βri ≥ 1.5y, (5e) 

From (5a)-(5e), we can observe that the digit selection 
boundaries computation only involves shift and addition. 
Furthermore, since the value of y is always in the range of [1, 
2), the value of y)61(  is always in the range of [1/6, 1/3) so 
that only the most important three fractional bits of βri are 
needed to be preserved in the selection function. With this 
further simplification, the adders used in the selection logic 
are only required to be 8 bits wide so that it can run at a very 
high speed. 

TABLE II 
PPNR TIMING AND LU OF RADIX-4 SRT PIPELINED ARRAY DIVISION 

Max. freq. Latency Slices Radix-4 SRT 
division 133.156MHz 32 clocks 2,250 

 

 
Fig. 3  Radix-4 SRT pipelined array division 

TABLE III 
QUOTIENT SELECTION TABLE BY KORNERUP, [9] 

d = -2 -1 0 1 2 
Ld(y) -(2⅔)y -(1⅔)y -(⅔)y (⅓)y (1⅓)y 

Ud(y) -(1⅓)y -(⅓)y (⅔)y (1⅔)y (2⅔)y 

IV. SQUARE ROOTING 
The recurrence update equation for an SRT-based SQRT 

function is (6). Since 11 <<−−iβ  when i is large, (6) can be 
approximated as (7) below. 
 ri+1 = βri – qi+1 (2 qi+qi+1β

−ι−1) (6) 

 ri+1 = βri - qi+1(2 qi) (7) 

An SRT-based SQRT shares the same architecture as 
division and thus, the complexity of SRT SQRT is similar to 
its division counterpart. A modified Dijkstra SQRT is 



presented in [10]. While this algorithm is radix-2, its 
complexity is less than half of that of radix-4 SRT division 
and thus lower than radix-4 SRT square root. Xilinx pPnR and 
LU results of our implementation are in Table 4. The structure 
of each iteration is illustrated in Fig. 4. Because our word 
length is 24 bits, an array processor needs 12 such structures 
cascaded together. 

TABLE IV 
PPNR TIMING AND LU OF DIJKSTRA SQRT 

Max. freq. Latency Slices Dijkstra Square 
Rooting 150.263MHz 48 clocks 1,038 

 
Fig. 4  Dijkstra SQRT 

V. FUNCTION 2X 

The actual powering operation needed in the channel model 
is base 10, i.e., 10x. On the other hand, base 2 powering is 
easier to implement.  The transformation from base 10 to base 
2 is shown in Fig. 5. However, in our channel model generator 
this transformation is not explicitly required since we can 
incorporate this constant, log2(10), into the channel model 
parameters which are pre-computed and stored as constants in 
the ROM. 

 
Fig. 5  Transformation from base 10 powering to base 2 

A digital recurrence method is the primary approach used 
for implementations of hardware powering [13]. However, it 
exhibits the typical trade-off between the number of iterations 
and the size of the radix that is common to all digit recurrence 
algorithms. For the powering computation, each iteration 
requires a multiplication and an addition and therefore, if the 
digits are in radix-4 format, 7 stages are needed for a high 
speed pipelined array design. Thus, the complexity would be 
quite large.  Alternatively, a Taylor series expansion is a 
traditional mathematical method to approximate functions. 
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Choosing the order of the approximation is to trade off the 
size of the ROM and the number of multipliers/adders. We 
built our 2x computation using the 3rd-order Taylor series 
expansion based on the algorithm presented in [11]. Since for 
3rd-order approximation, we have 

 4m ≥ d, and (9) 

 3m + k ≥ d (10) 

where d is the word length, hence in our case, m = 6 and k = 6. 
Interestingly, instead of having five ROM tables of depth of 
64, we could choose to use only two ROM tables with each 
having a depth of 64. This is because our function is powering 
and its derivatives are simply the same function multiplied by a 
constant. However, we need two more multipliers. The 3rd-
order Taylor series expansion 2x function approximation 
architecture is shown in Fig. 6. Xilinx pPnR and LU results for 
our implementation are given in Table 5. 

TABLE V 
PPNR TIMING AND LU OF FUNCTION 2X USING TAYLOR SERIES EXPANSION 

Max. freq. Latency Slices Base 2 
Powering 135.117MHz 14 clocks 1,973 

 

 
Fig. 6  3rd-order Taylor series expansion of 2x 

VI. COMPLETE HARDWARE CHANNEL MODEL 
Reference [1] provides 4 different channel models for 

verification of the performance of UWB physical layer 
devices. There are seven key parameters that characterize the 
models. They are cluster arrival rate, ray arrival rate, cluster 
decay factor, ray decay factor, standard deviation of cluster 
lognormal fading term, standard deviation of ray lognormal 
fading term and the standard deviation of the lognormal 
shadowing  term, all of which were derived based on the 
measurements reported in [14]. Since it is recommended that 
the channel follows a lognormal distribution, a GNRNG 
becomes a key part of this channel model simulator.  In each 
channel realization, the model computes a cluster arrival time 
whenever this cluster arrival time isn’t greater than 10 times 
the cluster decay factor. In one cluster, the model also 
computes a ray arrival time whenever this ray arrival time 
isn’t greater than 10 times its decay factor. Each cluster and 
ray arrival time requires two GNRNs. Similarly, the signal 
amplitude of each ray needs two GNRNs with each for cluster 
lognormal fading and ray lognormal fading. To complete an 
amplitude computation, a 10x function is needed since the 
model is lognormal distributed. 



Since each channel realization has to be compensated with 
the lognormal shadowing term and the total energy has to be 
normalized to unity, one additional GNRN, square root and 
division are needed. As mentioned in [1], the time variability 
of the channel has to follow the recommendation set forth in 
[2] and [3]   We can make use of that recommendation to 
determine how fast the channel model simulator runs. 
Reference [2] indicates that the channel has to change 
completely from packet to packet. Therefore, if we assume the 
average number of channel taps in a realization is one 
thousand and the packet duration for a 220 Mbps throughput 
application is 41.25µs, then the channel model hardware has 
to produce one channel tap in 41.25 ns, which is equivalent to 
a frequency of 24.24 MHz. Based on this speed, we find that 
the basic computational building blocks have to run at a speed 
of at least 100 MHz, which we have achieved. The complete 
architectural diagram of the channel model is given in Fig. 1. 
The implementation results from Xilinx pPnR and LU reports 
are listed in Table 6. 

TABLE VI 
PPNR TIMING AND LU OF UWB CHANNEL MODEL SIMULATOR 

Max. freq. Latency Slices Channel model 
simulator 80.186MHz 1,089 clocks 7,747 

 

VII. CONCLUSIONS 
We built a complete UWB channel model emulator on a 

Xilinx Virtex-4 FPGA which runs at speeds up to 80 MHz. 
The logic utilization is 7,747 slices which consumes about 
half of the resources of a xc4vsx35 device.  This leaves room 
for a transmitter and/or receiver to be implemented on the 
same FPGA device. In the process of building the overall 
channel emulator design, several high-speed arithmetic 
circuits were developed as well. Specifically, a 250 MHz 
Gaussian noise random number generator was developed.  
Also, a pipelined array division unit using a radix-4 SRT 
algorithm was created which runs at up to 133 MHz.  A 
pipelined array square root processor using the Dijkstra 
algorithm runs at a speed of 150 MHz and also consumes 

relatively few resources. A 135 MHz 2x processor using a 3rd-
order Taylor series expansion method was also implemented. 
These individual arithmetic units may also prove to be useful 
in other applications which require high-speed arithmetic 
operators of those types. 
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