
DESIGN TECHNIQUES FOR PULSED STATIC CMOS

Kavitha Seshadri, Adrianne Pontarelli, Gauri Joglekar and Gerald E. Sobelman
Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN U.S.A.

{kavi3480, sobelman}@ece.umn.edu

ABSTRACT

This paper gives new results in the design of Pulsed
Static CMOS circuits. In particular, a new method of
circuit duplication has been proposed which is
particularly useful for the implementation of
arithmetic functions. An array multiplier and a carry-
select adder are used as representative design
examples. Simulation results confirm that these Pulsed
Static CMOS circuits operate correctly and have
greater throughput than traditional static designs.

1. INTRODUCTION

Digital CMOS circuits are implemented using either
static or dynamic design techniques. In static CMOS,
the output is tied to VDD or ground via a low resistance
path (except during switching) and this leads to
circuits which are very robust with good noise
immunity. Dynamic circuits on the other hand are less
stable and more susceptible to noise due to the
presence of high impedance circuit nodes and charge
sharing effects. The main limitation of static circuits
is their slower speed as compared to dynamic circuits.
The reasons for this include increased gate capacitance
(due to the presence of both PMOS and NMOS
transistors), output dependence on the previous cycle’s
inputs (due to charges that may be present at internal
nodes) and multiple switching of the output within a
cycle (depending on the input switching pattern) [1].

Pulsed Static CMOS (PS-CMOS) circuits combine the
advantages of both static and dynamic circuits in being
faster than traditional static designs and having better
noise immunity than dynamic designs. The patent of
Chen and Ditlow [1] gives a description of the PS-
CMOS design technique and its advantages. We have
extended these concepts and proposed a new method
of circuit duplication which is particularly useful when
applying the technique to arithmetic functions.

The remainder of this paper is organized as follows:
Section 2 gives a brief review of PS-CMOS. The
proposed method of duplication is explained in
Section 3. In Sections 4 and 5 we present two circuits
that have employed this method along with simulation
results. Finally, we summarize our conclusions in
Section 6.

2. PULSED STATIC CMOS

The idea underlying Pulsed Static CMOS (PS-CMOS)
design is to improve the speed of static circuits

through the use of node pre-conditioning. One of the
main limitations of static CMOS circuits is the need to
charge or discharge the output node through a series
chain of transistors. Such devices must be made larger
in order to reduce the total on-resistance of the path,
but this leads to increased gate capacitances which
adds to the overall delay budget. In PS-CMOS, the
static circuitry operates in such a way that signal
evaluation through a chain of series transistors is
minimized. This is achieved by pre-conditioning the
static circuits in a manner that resembles pre-charging
in dynamic circuits [1]. The pre-conditioning process
involves the propagation of two input patterns through
the static circuit; one pattern causes the circuit to
evaluate and hold its output and the second pattern
causes the circuit to be reset. The circuit is reset into a
state from which its subsequent evaluation will be fast,
i.e. one which does not require charging or
discharging through a series chain.

Static logic circuits predominantly consist of a
combination of NAND, NOR and NOT gates. Hence,
it is crucial to reduce the evaluation time of these gates
in order to ensure circuit speedup. On analyzing
NAND and NOR gates it is seen that NAND gates
have series NMOS transistors (pull-down path is
penalized) and NOR gates have series PMOS
transistors (pull-up path is penalized). Therefore,
during the reset phase, it is favorable to preset the
NAND outputs to a reset low level and the NOR
outputs to a reset high level, in order to minimize the
evaluation time. As a result of this, NAND gates are
fed by tri-state inverters which are reset high elements
and NOR gates are fed by reset-low elements [1].

Earlier work [1] has shown that a series chain of
alternating NAND and NOR static gates would be the
fastest and the most optimum topology. This optimal
topology is difficult to realize for many applications
and so in many cases we settle for less optimal
combinations. However, we must still ensure that the
inputs to a given static gate are all at the same logic
level during the reset phase. In certain logic circuits,
some components do not meet this criterion. When
this happens, the circuit does not exhibit the required
PS-CMOS behavior. In order to overcome this
problem, we have proposed a new method of circuit
duplication and this is explained in the next section.

3. METHOD OF DUPLICATION

As mentioned in the previous section, it is essential
that all of the inputs to any given static logic gate be at
the same logic level during the reset phase in order to

satisfy the PS-CMOS criterion. This criterion is not
satisfied in static logic circuits that use XOR functions
or multiplexers. An XOR implementation using
NAND and NOR gates is shown in Fig. 1.

Input 0

Input 1 RH

RL

RL

RH

RH RL

RH

RL

Mismatch of logic
levels at the
inputs of the
NOR gate

 XOR gate

Fig. 1: Reset levels in an XOR implementation.

The inputs shown in Fig. 1 are obtained after
propagation through static latches and tri-state
inverters. The choice of reset high or reset low tri-state
inverters depends on the gates to which the inputs are
fed. In accordance with this, the inputs are generated
as reset high (RH) or reset low (RL) signals and fed to
the first level of logic gates. The mismatch in logic
levels of the inputs occurs at the last level (the NOR
gate), and hence the criterion is violated.

Any other static implementation of the XOR function
would also have a mismatch somewhere within the
circuit, leading to glitches in the output. Thus, even
though the circuit would function correctly, the basic
principle of PS-CMOS would not be satisfied and
hence it will not be faster than the static design. The
same situation occurs in multiplexers as well. As
XOR functions and multiplexers are building blocks
of many arithmetic functions, it is important to find a
way to address this issue. In this regard, we have
developed an innovative method of logic duplication
where both reset high and reset low elements are used
for all the inputs. The modified architecture of the
XOR gate with duplication is shown in Fig. 2.

RH

RH RL

RH

RH

RL

RL

RL RH

RH RL

Both the inputs are
now at the same
logic level during
reset phase

with Reset low

 element

with Reset high

 element

 element
with Reset low

with Reset high

 element

Inp 0 (high)

Inp 0

Inp 1

Inp 0
(low)

Inp 1 (high)

Inp 1 (low)Static latch

Static latch

Static latch

Static latch

Duplication of the XOR gate

Fig 2: XOR implementation after duplication.

Through the duplication of the circuitry, each input is
generated as a reset high and as a reset low signal by
both the tri-state inverters and is given to the gates in
the XOR architecture. As a result of this, both the
inputs to the NOR gate are observed to be at the same
level during the reset phase and hence the criterion for
PS-CMOS design is satisfied.

Although, the duplication of circuitry results in more
area and a greater number of transistors when
compared to a static or dynamic circuit, faster
evaluation and an associated improvement in
throughput is achieved. This has been demonstrated
using two representative circuits, namely a 4-bit
combinational multiplier and an 8-bit carry-select
adder, which are described in the next two sections.

4. 4-BIT PS-CMOS MULTIPLIER

A 4-bit combinational multiplier uses an array of AND
gates to generate the partial products in parallel and a
sequence of half adders and full adders to sum them,
as shown in Fig. 3 [2].

y1x0

y0x3 y0y0

 FA HA FA FA FA FA FA FA

x3 y2 y2 y2 y2x0x1x2

 FA

x2 y0

x1 y1

 HA

x1 y0

 FA FA FA FA

y1x2

 FA

y1x2

 FA

y1x2
y1x0

x3 y1

 FA HA FA FA FA FA FA FA

x3 x0x1x2 y3y3y3y3

S0

S1

S2

S3S4S5S6S7

CARRY OUT

FA: Full Adder
HA: Half Adder

yi: Multiplier bits
xi: Multiplicand bits

Si: Sum bits

4−bit Combinational Multiplier

Fig. 3: Architecture of the 4-bit array multiplier.

In static CMOS, the AND and OR gates would be
replaced by NAND and NOR gates followed by
inverters. In the PS-CMOS design, duplication is
incorporated, as both the half and full adders include
XOR operations. Hence, all the inputs to the half
adders and full adders are generated as both reset high
and reset low signals. This requires the duplication of
the partial product generation stage as the outputs
generated by this stage are the inputs to the various
adders. In addition to this we need to duplicate all of
the half and full adders as they are connected in
tandem. A full adder circuit with the required
duplication is shown in Fig. 4.

The resulting space-time diagram for the reset and
evaluate wavefronts has been obtained through
HSPICE simulations using the 0.18 µ TSMC process
models and is shown in Fig. 5.

RH

Full Adder circuit : Generates Carry and Sum as reset high signals

RL

RH

RH

RL RH

RH

Inp 0 RH

Inp 1 RH
RL

RH RL

Sum RH

Inp 3 RL

Inp 3 RH

Inp 0 RH

Inp 1 RH

Inp 3 RH
RL

RL
RH

RH

RL Carry RH

Inp 0 RL

Inp 1 RL

Duplication of Full− Adder circuit to give Carry and Sum as reset low outputs

Sum RL

RL

Inp 0 RL

Inp 3 RL

Inp 3 RL

Inp 1 RL

RH

RH
RL

RL

RH Carry RL

Inp 0 RL

Inp 1 RL

RL

RL

RH

H

RL

RL

RH
RL RH

RL

Inp 0RH

Inp 1RH

Inp 3 RH

Inp 1 RH

Inp 0 RL

Inp 1 RL

RH

RH

RL

RL

RH

RH

RL RH

RH

RL RH
Inp 3 RL

Inp 0 RH

RL

Inp 0 RH

Inp 0 RL

Inp 1 RL

Inp 1 RH

RH

RL

RL

RH

RL

RL

RH RL

RH RL
Inp 3 RH

Fig. 4: Full adder with duplication.

4.5 5 5.5 6 6.5 7
0

1

2

3

4

5

6

7

8

9

Time (ns)

Lo
gi

c
D

ep
th

Space time diagram

Reset wavefront
(cycle 0)

Evaluate wave front
(cycle 1)

Reset wave front
(cycle 1)

Pulse width increases

Fig. 5: Space-time diagram for the multiplier.

Ideally, it is desirable to have the reset wavefront of
the current cycle slower by a factor of 1.5 than the
evaluate wavefront so that the next evaluate wavefront
never overlaps with the reset wavefront, assuming that
each logic level takes one unit of time to evaluate and
1.5 units of time to reset [1]. In the above space-time
diagram, this ratio has been achieved through careful
skewing of the transistor widths. The width of the
evaluate pulse also grows with increased logic depth,
which enables correct latching of the output after the
last level of logic. The PS-CMOS design of the 4-bit
multiplier has also been found to be 1.4 times faster
than a corresponding static implementation. Note that
in order to make a fair comparison, the minimum (i.e.
unit) width of the transistors for both the PS-CMOS
and static designs are kept the same (0.36 µ).

5. 8-BIT PS-CMOS ADDER

A carry look-ahead adder (CLA) block avoids the
rippling of carry signals through multiple bit positions,
and it is used as a component in many types of adder

architectures. A CLA block makes use of generate
and propagate signals as follows:

Cout,k = Gk + Pk(Gk-1 + Pk-1(…..+ P1(G0 + P0Ci,0)))

where:

k is the number of bits in the computation,
Gk is the generate signal for the kth bit,
Pk is the propagate signal for the kth bit,
Ci,0 is the carry input and
Cout,k is the carry output for the kth bit.

The sum outputs are obtained by XORing the
propagate and carry input signals [3, 4]. The
architecture of a 4-bit carry look-ahead block is shown
in Fig. 6.

A0

B1

B0

A1

A2

B2

A3

B3

p0

g1

g0

p1

g2

p2

g3

p3

C0

p1

C1

C2

C3

C4

p2

p3

C0

p0 S0

S1

S2

S3

Si: Sum bits
Ci: Carry bits

Ai, Bi: Input bits

pi: Propagate signals
gi: Generate signals

4−bit CLA

Fig. 6: 4-bit CLA block.

The PS-CMOS design of a 4-bit CLA block is
simplified due to the absence of XOR gates in the
carry generation path. Thus, with appropriate skewing,
the carry signals can be generated with minimal delay.
However, the presence of XOR gates in the sum path
makes duplication necessary at this stage. The
increase in area consumption caused by duplication
can be minimized by restricting this process to the
inputs of the sum generation stage alone. Thus, the
carry signals can be generated in one stage and all the
sum signals can be generated simultaneously in the
subsequent stage. It can be seen that the delay is
primarily due to the carry signals since the sum signals
are generated subsequently in parallel.

We have designed and simulated an 8-bit adder which
uses three of these 4-bit CLA blocks within an overall
carry-select adder architecture. The block diagram of
the resulting 8-bit adder is shown in Fig 7.

Correct
outputs

C0

S0 S1 S2 S3

C4
4−bit Carry Look−ahead adder

C4

(as ’1’)

g4 p4 g5 p5 g6 p6 g7 p7

g4 p4 g5 p5 g6 p6 g7 p7

C4

(as ’0’)

 g0 p0 g1 p1 g2 p2 g3 p3

S4 S5 S6 S7

S4 S5 S6 S7

C8

C8

C2 C3C1

C5 C6 C7

C5 C6 C7

4−bit Carry Look−ahead adder
 (Block 1)

4−bit Carry Look−ahead adder
(Block 2)

Outputs from

Outputs from

C5
C6
C7
C8

S4

S7
S6
S5

Multiplexer
 (Carry select
 feature)

CLA block 1

CLA block 2

Inputs to the
multiplexer C4

Select signal

8−bit CLA with Carry select feature

Fig. 7: Architecture of the 8-bit carry-select adder.

The architecture consists of three 4-bit CLA blocks
that operate in parallel. For the lower four bits, a
single 4-bit CLA block is used to generate the sum and
carry signals based on the carry input (C0). However,
for the higher-order bits two 4-bit CLA blocks are
used to compute the sum and carry outputs. One of
these has a carry input of 0 and the other has a carry
input of 1. The carry output (C4) serves as the select
signal for the multiplexer to choose the correct set of
outputs from the two CLA blocks (Block 1 and 2).
Since all the CLA generators operate in parallel, a
rippling delay is avoided. However, in order to
provide a matched input signal type to the multiplexer,
duplication of the CLAs is necessary.

With careful skewing of the gates, a slope ratio of 1.5
has been achieved between the evaluate and reset
wavefronts, as shown in the space-time diagram of Fig.
8. It is also observed that as the logic depth increases,
the width of the evaluate wavefront increases, thus
enabling correct latching of the output.

4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6
0

1

2

3

4

5

6

7

8

9

10

Time(ns)

Lo
gi

c
de

pt
h

Space time diagram of a PS−CMOS 8−bit CLA

Reset wavefront
(cycle 0)

Evaluate wave front
(cycle 1)

Reset wave front
(cycle 1)

Pulse width increases

Carry 2

Carry 4

Carry 6

Carry 8

Sum 6

Fig. 8: Space-time diagram for the 8-bit adder.

The speed of this design is observed to be twice that of
a corresponding static design. The observed delay

between the input and output in the static design is
0.81 ns whereas that between the evaluate edge of the
clock and the output in the PS-CMOS design is only
0.40 ns. Note also that some idle time occurs after the
completion of the evaluation wavefront. This is
unavoidable as the desired ratio of 1.5 would not be
achieved if the clock period were reduced any further.

A possible alternative to reduce the extent of
duplication would be to implement this design in two
stages. The first stage would consist of the three 4-bit
CLA blocks and a multiplexer to produce the carry
signals. The second level would contain latches and
tri-state buffers which serve to duplicate the carry and
propagate signals in order to generate the sum outputs.
By postponing the sum generation, we would need to
duplicate only the select signal C4 and the inputs to the
second level. Thus, the area consumption would be
significantly reduced as none of the 4-bit CLAs would
have to be duplicated. However, this modification
would result in the sum signals being available only
after two clock cycles. .

6. CONCLUSIONS

This paper introduces a novel method of duplication in
PS-CMOS circuits that is extremely useful for
arithmetic functions and which leads to circuits having
a significant speed improvement compared to static
CMOS. We have illustrated the design technique in
two representative modules, an array multiplier and a
carry-select adder. Simulation results indicate that the
circuits operate properly and are significantly faster
than corresponding static CMOS designs. It should
also be noted that the circuits implemented using this
method are most feasible when the number of bits is
relatively small. This is because an increase in the
number of bits would require careful skewing of a
large number of transistor widths in order to achieve
the desired speed up. Moreover, the amount of
duplication also grows and the design becomes quite
large. Although the method has these limitations, the
goal of a faster static circuit design can be achieved
using duplication in PS-CMOS.

ACKNOWLEDGEMENT

This work was supported in part by an equipment
grant from Intel Corporation.

REFERENCES

[1] Chih-Liang Chen and Gary S. Ditlow, "Pulsed
Static CMOS Circuit," U.S. Patent No. 5,495,188,
February 27, 1996.
[2] Jan M. Rabaey, Digital Integrated Circuits – A
Design Perspective, Prentice Hall, 1996.
[3] B. H. Parhami, Computer Arithmetic: Algorithms
and Hardware Design, New York: Oxford University
Press, 2000.
[4] N. H. E. Weste and K. Eshragian, Principles of
CMOS VLSI Design, 2nd Ed., Addison-Wesley, 1993.

