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ABSTRACT 

 
This paper gives new results in the design of Pulsed 
Static CMOS circuits.  In particular, a new method of 
circuit duplication has been proposed which is 
particularly useful for the implementation of 
arithmetic functions.  An array multiplier and a carry-
select adder are used as representative design 
examples. Simulation results confirm that these Pulsed 
Static CMOS circuits operate correctly and have 
greater throughput than traditional static designs. 
 

1. INTRODUCTION 
 

Digital CMOS circuits are implemented using either 
static or dynamic design techniques. In static CMOS, 
the output is tied to VDD or ground via a low resistance 
path (except during switching) and this leads to 
circuits which are very robust with good noise 
immunity. Dynamic circuits on the other hand are less 
stable and more susceptible to noise due to the 
presence of high impedance circuit nodes and charge 
sharing effects.   The main limitation of static circuits 
is their slower speed as compared to dynamic circuits. 
The reasons for this include increased gate capacitance 
(due to the presence of both PMOS and NMOS 
transistors), output dependence on the previous cycle’s 
inputs (due to charges that may be present at internal 
nodes) and multiple switching of the output within a 
cycle (depending on the input switching pattern) [1]. 
  
Pulsed Static CMOS (PS-CMOS) circuits combine the 
advantages of both static and dynamic circuits in being 
faster than traditional static designs and having better 
noise immunity than dynamic designs. The patent of 
Chen and Ditlow [1] gives a description of the PS-
CMOS design technique and its advantages. We have 
extended these concepts and proposed a new method 
of circuit duplication which is particularly useful when 
applying the technique to arithmetic functions. 
 
The remainder of this paper is organized as follows: 
Section 2 gives a brief review of PS-CMOS. The 
proposed method of duplication is explained in 
Section 3. In Sections 4 and 5 we present two circuits 
that have employed this method along with simulation 
results. Finally, we summarize our conclusions in 
Section 6. 

 
2.   PULSED STATIC CMOS 

 
The idea underlying Pulsed Static CMOS (PS-CMOS) 
design is to improve the speed of static circuits 

through the use of node pre-conditioning. One of the 
main limitations of static CMOS circuits is the need to  
charge or discharge the output node through a series  
chain of transistors.  Such devices must be made larger 
in order to reduce the total on-resistance of the path, 
but this leads to increased gate capacitances which 
adds to the overall delay budget.  In PS-CMOS, the 
static circuitry operates in such a way that signal 
evaluation through a chain of series transistors is 
minimized. This is achieved by pre-conditioning the 
static circuits in a manner that resembles pre-charging 
in dynamic circuits [1].  The pre-conditioning process 
involves the propagation of two input patterns through 
the static circuit; one pattern causes the circuit to 
evaluate and hold its output and the second pattern 
causes the circuit to be reset.  The circuit is reset into a 
state from which  its subsequent evaluation will be fast, 
i.e. one which does not require charging or 
discharging through a series chain. 
 
Static logic circuits predominantly consist of a 
combination of NAND, NOR and NOT gates. Hence, 
it is crucial to reduce the evaluation time of these gates 
in order to ensure circuit speedup. On analyzing 
NAND and NOR gates it is seen that NAND gates 
have series NMOS transistors (pull-down path is 
penalized) and NOR gates have series PMOS 
transistors (pull-up path is penalized). Therefore, 
during the reset phase, it is favorable to preset the 
NAND outputs to a reset low level and the NOR 
outputs to a reset high level, in order to minimize the 
evaluation time. As a result of this, NAND gates are 
fed by tri-state inverters which are reset high elements 
and NOR gates are fed by reset-low elements [1].  
 
Earlier work [1] has shown that a series chain of 
alternating NAND and NOR static gates would be the 
fastest and the most optimum topology. This optimal 
topology is difficult to realize for many applications 
and so in many cases we settle for less optimal 
combinations. However, we must still ensure that the 
inputs to a given static gate are all at the same logic 
level during the reset phase.  In certain logic circuits, 
some components do not meet this criterion. When 
this happens, the circuit does not exhibit the required 
PS-CMOS behavior. In order to overcome this 
problem, we have proposed a new method of circuit 
duplication and this is explained in the next section.   
 

3. METHOD OF DUPLICATION 
 
As mentioned in the previous section, it is essential 
that all of the inputs to any given static logic gate be at 
the same logic level during the reset phase in order to 



satisfy the PS-CMOS criterion. This criterion is not 
satisfied in static logic circuits that use XOR functions 
or multiplexers. An XOR implementation using 
NAND and NOR gates is shown in Fig. 1. 
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Fig. 1: Reset levels in an XOR implementation. 
 
The inputs shown in Fig. 1 are obtained after 
propagation through static latches and tri-state 
inverters. The choice of reset high or reset low tri-state 
inverters depends on the gates to which the inputs are 
fed. In accordance with this, the inputs are generated 
as reset high (RH) or reset low (RL) signals and fed to 
the first level of logic gates. The mismatch in logic 
levels of the inputs occurs at the last level (the NOR 
gate), and hence the criterion is violated. 
 
Any other static implementation of the XOR function 
would also have a mismatch somewhere within the 
circuit, leading to glitches in the output.  Thus, even 
though the circuit would function correctly, the basic 
principle of PS-CMOS would not be satisfied and 
hence it will not be faster than the static design.  The 
same situation occurs in multiplexers as well.  As 
XOR functions and multiplexers are building blocks 
of many arithmetic functions, it is important to find a 
way to address this issue.  In this regard, we have 
developed an innovative method of logic duplication 
where both reset high and reset low elements are used 
for all the inputs. The modified architecture of the 
XOR gate with duplication is shown in Fig. 2. 
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Fig 2: XOR implementation after duplication. 
 

Through the duplication of the circuitry, each input is 
generated as a reset high and as a reset low signal by 
both the tri-state inverters and is given to the gates in 
the XOR architecture. As a result of this, both the 
inputs to the NOR gate are observed to be at the same 
level during the reset phase and hence the criterion for 
PS-CMOS design is satisfied. 
 
Although, the duplication of circuitry results in more 
area and a greater number of transistors when 
compared to a static or dynamic circuit, faster 
evaluation and an associated improvement in 
throughput is achieved.  This has been demonstrated 
using two representative circuits, namely a 4-bit 
combinational multiplier and an 8-bit carry-select 
adder, which are described in the next two sections.  
 

4.  4-BIT PS-CMOS MULTIPLIER 
 
A 4-bit combinational multiplier uses an array of AND 
gates to generate the partial products in parallel and a 
sequence of half adders and full adders to sum them, 
as shown in Fig. 3  [2]. 
 

y1x0

y0x3 y0y0

  FA   HA  FA  FA  FA   FA  FA  FA

x3 y2 y2 y2 y2x0x1x2

  FA

x2 y0

x1 y1

  HA

x1 y0

  FA  FA  FA   FA

y1x2

  FA

y1x2

  FA

y1x2
y1x0

x3 y1

  FA   HA  FA  FA  FA   FA  FA  FA

x3 x0x1x2 y3y3y3y3

S0

S1

S2

S3S4S5S6S7

CARRY OUT

FA: Full Adder
HA: Half Adder

yi: Multiplier bits
xi: Multiplicand bits

Si: Sum bits

4−bit Combinational Multiplier  
 
 

Fig. 3: Architecture of the 4-bit array multiplier. 
 
In static CMOS, the AND and OR gates would be 
replaced by NAND and NOR gates followed by 
inverters. In the PS-CMOS design, duplication is 
incorporated, as both the half and full adders include 
XOR operations. Hence, all the inputs to the half 
adders and full adders are generated as both reset high 
and reset low signals.  This requires the duplication of 
the partial product generation stage as the outputs 
generated by this stage are the inputs to the various 
adders. In addition to this we need to duplicate all of 
the half and full adders as they are connected in 
tandem. A full adder circuit with the required 
duplication is shown in Fig. 4. 
 
The resulting space-time diagram for the reset and 
evaluate wavefronts has been obtained through 
HSPICE simulations using the 0.18 µ TSMC process 
models and is shown in Fig. 5. 
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Fig. 4: Full adder with duplication. 
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Fig. 5: Space-time diagram for the multiplier. 

 
Ideally, it is desirable to have the reset wavefront of 
the current cycle slower by a factor of 1.5 than the 
evaluate wavefront so that the next evaluate wavefront 
never overlaps with the reset wavefront, assuming that 
each logic level takes one unit of time to evaluate and 
1.5 units of time to reset [1].  In the above space-time 
diagram, this ratio has been achieved through careful 
skewing of the transistor widths. The width of the 
evaluate pulse also grows with increased logic depth, 
which enables correct latching of the output after the 
last level of logic. The PS-CMOS design of the 4-bit 
multiplier has also been found to be 1.4 times faster 
than a corresponding static implementation. Note that 
in order to make a fair comparison, the minimum (i.e. 
unit) width of the transistors for both the PS-CMOS 
and static designs are kept the same  (0.36 µ). 
 

5.  8-BIT PS-CMOS ADDER 
 
A carry look-ahead adder (CLA) block avoids the 
rippling of carry signals through multiple bit positions, 
and it is used as a component in many types of adder 

architectures.  A CLA block makes use of generate 
and propagate signals as follows: 
 
Cout,k = Gk + Pk(Gk-1 + Pk-1(…..+ P1(G0 + P0Ci,0))) 
 
where: 
 
k is the number of bits in the  computation, 
Gk is the generate signal for the kth bit, 
Pk is the propagate signal for the kth bit, 
Ci,0 is the carry input and 
Cout,k is the carry output for the kth bit. 
 
The sum outputs are obtained by XORing the 
propagate and carry input signals [3, 4]. The 
architecture of a 4-bit carry look-ahead block is shown 
in Fig. 6. 
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Fig. 6: 4-bit CLA block. 
 

The PS-CMOS design of a 4-bit CLA block is 
simplified due to the absence of XOR gates in the 
carry generation path. Thus, with appropriate skewing, 
the carry signals can be generated with minimal delay. 
However, the presence of XOR gates in the sum path 
makes duplication necessary at this stage.  The 
increase in area consumption caused by duplication 
can be minimized by restricting this process to the 
inputs of the sum generation stage alone. Thus, the 
carry signals can be generated in one stage and all the 
sum signals can be generated simultaneously in the 
subsequent stage. It can be seen that the delay is 
primarily due to the carry signals since the sum signals 
are generated subsequently in parallel. 
 
We have designed and simulated an 8-bit adder which 
uses three of these 4-bit CLA blocks within an overall 
carry-select adder architecture. The block diagram of 
the resulting 8-bit adder is shown in Fig 7.  
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Fig. 7: Architecture of the 8-bit carry-select adder. 
   
The architecture consists of three 4-bit CLA blocks 
that operate in parallel. For the lower four bits, a 
single 4-bit CLA block is used to generate the sum and 
carry signals based on the carry input (C0). However, 
for the higher-order bits two 4-bit CLA blocks are 
used to compute the sum and carry outputs. One of 
these has a carry input of 0 and the other has a carry 
input of 1. The carry output (C4) serves as the select 
signal for the multiplexer to choose the correct set of 
outputs from the two CLA blocks (Block 1 and 2). 
Since all the CLA generators operate in parallel, a 
rippling delay is avoided.   However, in order to 
provide a matched input signal type to the multiplexer, 
duplication of the CLAs is necessary.  
 
With careful skewing of the gates, a slope ratio of 1.5 
has been achieved between the evaluate and reset 
wavefronts, as shown in the space-time diagram of Fig. 
8. It is also observed that as the logic depth increases, 
the width of the evaluate wavefront increases, thus 
enabling correct latching of the output. 
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Fig. 8: Space-time diagram for the 8-bit adder. 
 
The speed of this design is observed to be twice that of 
a corresponding static design. The observed delay 

between the input and output in the static design is 
0.81 ns whereas that between the evaluate edge of the 
clock and the output in the PS-CMOS design is only 
0.40 ns.  Note also that some idle time occurs after the 
completion of the evaluation wavefront. This is 
unavoidable as the desired ratio of 1.5 would not be 
achieved if the clock period were reduced any further. 
 
A possible alternative to reduce the extent of 
duplication would be to implement this design in two 
stages. The first stage would consist of the three 4-bit 
CLA blocks and a multiplexer to produce the carry 
signals. The second level would contain latches and 
tri-state buffers which serve to duplicate the carry and 
propagate signals in order to generate the sum outputs.  
By postponing the sum generation, we would need to 
duplicate only the select signal C4 and the inputs to the 
second level. Thus, the area consumption would be 
significantly reduced as none of the 4-bit CLAs would 
have to be duplicated. However, this modification 
would result in the sum signals being available only 
after two clock cycles. . 

 
6. CONCLUSIONS 

 
This paper introduces a novel method of duplication in 
PS-CMOS circuits that is extremely useful for 
arithmetic functions and which leads to circuits having 
a significant speed improvement compared to static 
CMOS. We have illustrated the design technique in 
two representative modules, an array multiplier and a 
carry-select adder.  Simulation results indicate that the 
circuits operate properly and are significantly faster 
than corresponding static CMOS designs.  It should 
also be noted that the circuits implemented using this 
method are most feasible when the number of bits is 
relatively small. This is because an increase in the 
number of bits would require careful skewing of a 
large number of transistor widths in order to achieve 
the desired speed up. Moreover, the amount of 
duplication also grows and the design becomes quite 
large. Although the method has these limitations, the 
goal of a faster static circuit design can be achieved 
using duplication in PS-CMOS.  
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