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Abstract—Behavioral modeling with virtual built-in self-test 
verification of high-speed wired link designs is described in this 
paper.  Our procedure is based on principles of top-down 
mixed-signal design combined with a behavioral description 
language and mixed-mode simulations.  The use of Verilog-
AMS is applied not only to circuit modeling but also for repre-
senting noise on the input signal.  This approach provides sys-
tem-level jitter tolerance estimation, circuit critical path search 
and overall design verification.   Coding examples and simula-
tion results are included. 

I. INTRODUCTION 
The idea of top-down mixed-signal circuit design using a 

behavioral description for system-level modeling has been a 
topic of research interest [1-3].  Typically, system architec-
ture designers derive the required system or circuit specifica-
tion for certain targeted applications.  On the other hand, 
circuit designers would search for a type of circuit which is 
the best fit for the required specifications with minimum 
design cost and time and having superior performance.  Be-
fore going ahead with the detailed transistor-level design, 
behavioral models are usually used to verify the design at the 
system level in order to determine which type of circuit has 
the best performance.  During the design process, transistor-
level circuits may be mixed with behavioral models for pur-
poses of performance evaluation.  After completing each 
transistor-level circuit design, the corresponded behavioral 
circuit for each module is tweaked to match to its transistor-
level circuit performance.  By the end of the design process, 
a more thorough system-level interconnection check and 
performance verification are executed.  This final system–
level verification is done based on either mixed-mode or 
fully behavioral simulations.  The mixed-mode simulation 
includes both transistor and behavioral modules which have 
their critical path delays based on transistor-level extraction.  
Of course, an accurate behavioral model is needed in order to 
provide useful information for the total system-level verifica-
tion.  A complete transistor-level system performance 
evaluation is not practical due to the enormous simulation 

time that would be required [4].  Using behavioral modeling 
lets designers easily explore different system-level architec-
tures at the early design stages and thereby rapidly perform 
system-level verification,  Thus, including behavioral models 
in the overall design process reduces time to market and 
helps to ensure first time correct silicon.       
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Figure 1.  Application of  behavioral modeling to high-speed link design.  

Figure 1 shows an example of the use of behavioral cir-
cuit models applied to high-speed wired link designs.  The 
behavioral models may also be used to generate inputs such 
as clocks or PRBS data associated with jitter, to search for 
internal critical paths, to verify correctness of data transmis-
sion with virtual build-in-self-test and so on.  The ultimate 



goal is not only to use the behavioral description to model 
circuits for system-level verification but also to identify the 
weak points in a system for subsequent analysis.    

II. INPUT SIGNAL MODELING 
In the real world, inputs are never ideal and are always 

associated with some kind of noise.  In the time domain, the 
noise on clocks or input data is known as jitter.  This section 
demonstrates the use of behavioral modeling to generate 
these non-ideal signals.      

A.  Clock  with Jitter Modeling 
………
@ ( initial_step ) begin
next = $abstime; // next time
vout = 0; // output logic
randseed = 1; // random number seed

end
$bound_step(tp); // bounded step
tj = $rdist_normal(randseed, 0, tj_sd); // Gaussian Jitter 
@ ( timer( next ) ) begin
vout = !vout;
tj = tj * ( ( abs(tj) >= tj_min ) && ( abs(tj) <= tj_max ) )

+ tj_min * ( abs(tj) < tj_min )
+ tj_max * ( abs(tj) > tj_max ); // limit jitter in allowed range

tx = td + 10 * tp + tj; // clock edge time 
next = next + tp; // next time

end
V(clkip) <+ transition(vh* vout+vl*!vout,tx+tp*0.0,tr,tf ); // clkip
V(clkin) <+ transition(vh*!vout+vl* vout,tx+tp*0.0,tr,tf ); // clkin
V(clkqp) <+ transition(vh* vout+vl*!vout,tx+tp*0.5,tr,tf ); // clkqp
V(clkqn) <+ transition(vh*!vout+vl* vout,tx+tp*0.5,tr,tf ); // clkqn  
………

………
@ ( initial_step ) begin
next = $abstime; // next time
vout = 0; // output logic
randseed = 1; // random number seed

end
$bound_step(tp); // bounded step
tj = $rdist_normal(randseed, 0, tj_sd); // Gaussian Jitter 
@ ( timer( next ) ) begin
vout = !vout;
tj = tj * ( ( abs(tj) >= tj_min ) && ( abs(tj) <= tj_max ) )

+ tj_min * ( abs(tj) < tj_min )
+ tj_max * ( abs(tj) > tj_max ); // limit jitter in allowed range

tx = td + 10 * tp + tj; // clock edge time 
next = next + tp; // next time

end
V(clkip) <+ transition(vh* vout+vl*!vout,tx+tp*0.0,tr,tf ); // clkip
V(clkin) <+ transition(vh*!vout+vl* vout,tx+tp*0.0,tr,tf ); // clkin
V(clkqp) <+ transition(vh* vout+vl*!vout,tx+tp*0.5,tr,tf ); // clkqp
V(clkqn) <+ transition(vh*!vout+vl* vout,tx+tp*0.5,tr,tf ); // clkqn  
………

 

Figure 2.  Example of modeling a clock with random jitter. 

The clock synthesizer module as shown in Figure 1 often 
requires a reference clock input.  This clock input normally 
contains a certain amount of random jitter (RJ). [5] This RJ 
information is needed when performing system-level versifi-
cation or clock-synthesizer design in a high-speed wired link.  
For the other individual module designs such as the serializer 
and clock data recovery (CDR) of Figure 1, the major con-
cern is the impact of jitter from the output clock of the syn-
thesizer.  Reference [6] provides a detailed analysis of this 
impact in high-speed serial links.  An example of a clock 
with RJ modeling is shown in Figure 2.  RJ typically has a 
Gaussian distribution.  The magnitude of RJ is a function of 

the desired bit error rate (BER) for the system. [7]  The ex-
pected jitter magnitude and time interval for the RJ distribu-
tion are taken as inputs to generate the RJ in this example. 

B. Data with Jitter Modeling 
………
@ ( initial_step ) begin
seed = prbsseed % pow(2 , prbs_bit); // trim seed within prbs length
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = (seed >= pow(2 , i - 1) ); // initialize prbs 
seed = seed - bits[i] * pow(2 , i - i); 

end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bits xor for bit0 
next = $abstime; // next time
vout = bits[prbs_bit]; // output data logic
randseed = 1; // random number seed

end
$bound_step(tp);
rj = $rdist_normal(randseed, 0, rj_sd); // Gaussian rj     
dj = $rdist_uniform(randseed, 0, dj_max) - dj_max/2; // Uniform dj
@ ( timer( next ) ) begin
vout = bits[prbs_bit - 1]; // output data logic
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = bits[i - 1]; // prbs shift one bit
end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bit0 xor for bit0
rj = rj * ( ( abs(rj) >= rj_min ) && ( abs(rj) <= rj_max ) )

+ rj_min * ( abs(rj) < rj_min )
+ rj_max * ( abs(rj) > rj_max ); // limit jitter in allowed range

tx = td + 10 * tp + rj + dj; // data edge time 
next = next + tp; // next time

end
V(prbsp)  <+ transition(vh* vout+vl*!vout,tx    ,tr,tf ); // prbsp
V(prbsn)  <+ transition(vh*!vout+vl* vout,tx    ,tr,tf ); // prbsn
V(prbsdp) <+ transition(vh* vout+vl*!vout,tx+tdd,tr,tf ); // prbsdp
V(prbsdn) <+ transition(vh*!vout+vl* vout,tx+tdd,tr,tf ); // prbsdn
………

………
@ ( initial_step ) begin
seed = prbsseed % pow(2 , prbs_bit); // trim seed within prbs length
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = (seed >= pow(2 , i - 1) ); // initialize prbs 
seed = seed - bits[i] * pow(2 , i - i); 

end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bits xor for bit0 
next = $abstime; // next time
vout = bits[prbs_bit]; // output data logic
randseed = 1; // random number seed

end
$bound_step(tp);
rj = $rdist_normal(randseed, 0, rj_sd); // Gaussian rj     
dj = $rdist_uniform(randseed, 0, dj_max) - dj_max/2; // Uniform dj
@ ( timer( next ) ) begin
vout = bits[prbs_bit - 1]; // output data logic
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = bits[i - 1]; // prbs shift one bit
end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bit0 xor for bit0
rj = rj * ( ( abs(rj) >= rj_min ) && ( abs(rj) <= rj_max ) )

+ rj_min * ( abs(rj) < rj_min )
+ rj_max * ( abs(rj) > rj_max ); // limit jitter in allowed range

tx = td + 10 * tp + rj + dj; // data edge time 
next = next + tp; // next time

end
V(prbsp)  <+ transition(vh* vout+vl*!vout,tx    ,tr,tf ); // prbsp
V(prbsn)  <+ transition(vh*!vout+vl* vout,tx    ,tr,tf ); // prbsn
V(prbsdp) <+ transition(vh* vout+vl*!vout,tx+tdd,tr,tf ); // prbsdp
V(prbsdn) <+ transition(vh*!vout+vl* vout,tx+tdd,tr,tf ); // prbsdn
………

 

Figure 3.  Example of modeling data having ISI and random jitter. 

A bandwidth-limited transmission channel causes inter-
symbol interference (ISI) on data, while an imperfect clock 
injects RJ into the data stream.  Other jitter associated with 
the data are cross-talk (XT) and duty-cycle distortion (DCD).  
XT can be treated as a superposition of noise and signal.  
DCD is a skewing of the pulse width.  Both ISI and DCD are 
part of deterministic jitter (DJ).  A discussion of jitter associ-



ated with data can be found in Ref. [8] and behavioral 
modeling of jitter is discussed in Ref. [9]. An example of 
data having RJ and DJ is shown in Figure 3, which presents a 
pseudorandom bit sequence (PRBS) data with a jitter genera-
tor.  For the deserializer and the transmit driver designs, RJ 
is typically the only type included.  For the receiver input 
and CDR design, however, both RJ and DJ should be con-
sidered. 

III. SYSTEM AND CIRCUIT MODELING 
System and circuit behavioral modeling allow designers 

to explore different system architectures or circuit topologies 
and make a quick feasibility analysis in the early stages of 
design [10].  Moreover, behavioral modeling is often used to 
prove the correctness of the fundamental theory and to esti-
mate the overall performance of the system before starting 
the transistor-level design [3].  The goal is to provide an effi-
cient system-level or hierarchical mixed-mode design verifi-
cation platform.   

A. System-Level Modeling 
Behavioral modeling at the system-level often starts from 

a functional description in order to provide an intuitive feel 
for the signal flow from input to output as well as the overall 
system functionality.   For example, a high-speed serial link 
starts with low-frequency parallel data sampled by a synthe-
sized clock and serialized into a stream of data.  The serial-
ized data is then pre-emphasized and transmitted to the re-
ceiver through a bandwidth-limited channel.  The receiver 
needs to equalize the received signal in order to compensate 
the high frequency spectrum loss before extracting the clock 
and data from the CDR loop.  Next, the extracted data is 
sampled by the recovered clock and deserialized back into a 
parallel set of signals.  Once a preliminary behavioral model 
has demonstrated the expected functional operation, then 
non-ideal components for jitter described in Section II are 
included to estimate jitter tolerance.   

B. Circuit Level Modeling 
Individual circuit modules below the system-level should 

also be modeled using behavioral descriptions.  Such a cir-
cuit model could be used as an input signal provider or an 
output signal checker when running a transistor-level 
performance simulation for a specific circuit block.  On the 
other hand, the circuit model may also be used for system-
level mixed-mode or purely behavioral design verification.   

IV. DESIGN VERIFICATION 
The design verification process may be divided into mod-

ule and system levels of performance evaluation   It can be 
classified as being either full behavioral, mixed-mode or a 
complete transistor-level verification.  Based on principles of 
top-down mixed-signal design, the design description pro-
ceeds from top to bottom (i.e., system-level to circuit level), 
and from purely behavioral to a purely physical level.  On 
the other hand, the verification process may run from bottom 
to top and from physical to behavioral descriptions.  Such a 

performance evaluation process is called Bottom-Up 
Verification [3].      

A. Test Bench 
We refer to a test bench based on behavioral modeling as 

virtual built-in self-test (VBIST).  The primary focus of 
VBIST is to verify the designed physical circuit not only 
under different process, voltage and temperature (PVT) con-
ditions, but also under extreme values of the input signals.  
For example, the receiver input stage which includes an input 
buffer, DC-restore and equalizer could have different output 
responses based on an AC- or DC-coupled connection, the 
input common-mode voltage, the degree of duty-cycle dis-
tortion and the magnitude of DJ and RJ.  If the input buffer 
gain and the equalizer frequency compensation are also vari-
able, there will be on the order of 10 variations to consider 
during the analysis.  The goal of VBIST is to create a test 
vector generator based on behavioral models that can ac-
commodate all of these types of variations.            

B. Critical Path Detector 

 

Figure 4.  Phase detector modeling and simulation. 

The primary purpose of critical path detection is to iden-
tify the components which are most likely to degrade the 
overall performance in a designed circuit or system.  For 
example, the phase detector (PD) in the CDR block samples 
the input signal at the receiver input stage and often demulti-
plexes the sampled stream into two (or more) parallel output 
signals [11].  One of the output signals may have a higher 
probability of bit errors than the other signal.  A critical path 
detector must be able to identify the weaker path and the 
location of the failing component.  An example of such a 
simulation is shown in Figure 4.  Of course, the same con-



cepts can also be applied to serializer and deserializer design 
verification. 

C. System Level Verification 
.........
@ ( cross( V(clk) - vt_clk , 1 ) ) begin 

ct = $abstime; // get current time
dx[ 0] = ( V(d00) > vt_d ); // transfer input data into dx in logic level 
.........
dx[19] = ( V(d19) > vt_d ); // from bit 0 to bit 19
err = 0; // set sum of error bits to be zero for 1st set comparison    
for ( i = 0 ; i < 30 - input_bits ; i = i + 1 ) begin

p[i] = p[i + input_bits]; 
d[i] = d[i + input_bits]; 
e[i] = ( d[i] != p[i] );  
err = err + e[i];

end
for ( i = 30 - input_bits ; i < 30 ; i = i + 1 ) begin  

p[i] = ( p[i - prbs_bit] + p[i - prbs_fbb] ) % 2;     
d[i] = dx[i - 30 + input_bits]; 
e[i] = ( d[i] != p[i] );
err = err + e[i];

end
end
if (err > 0) begin

errx = 0; // set sum of error bits to be zero for 2nd set comparison
for ( i = 0 ; i < prbs_bit ; i = i + 1 ) begin

px[i] = d[i];                                
ex[i] = ( d[i] != px[i] );
errx = errx + ex[i];                         

end
for ( i = prbs_bit ; i < 30 ; i = i + 1 ) begin

px[i] = ( px[i - prbs_bit] + px[i - prbs_fbb] ) % 2; 
ex[i] = ( d[i] != px[i] );
errx = errx + ex[i];

end
if (errx == 0) begin 

for ( i = 0 ; i < 30 ; i = i + 1 ) begin
p[i] = px[i];
e[i] = ex[i];

end      
end
err = 0; // set sum of error bits to be zero for initial set comparison 
if ( ( ct - st ) >= ts_ebc ) begin

for ( i = 0 ; i < input_bits ; i = i + 1 ) begin
eb_cnt = eb_cnt + e[ 30 - input_bits +  i ]; // counting error bits

end
end

end      
V(e00) <+ transition(voh*e[30-input_bits+ 0]

+vol*!e[30-input_bits+ 0],td_e,tr_e,tr_e);
.........                                                       
V(e19) <+ transition(voh*e[30-input_bits+19]

+vol*!e[30-input_bits+19],td_e,tr_e,tr_e);
V(ebc) <+ transition(eb_cnt, td_e, tr_e, tr_e);
.........

.........
@ ( cross( V(clk) - vt_clk , 1 ) ) begin 

ct = $abstime; // get current time
dx[ 0] = ( V(d00) > vt_d ); // transfer input data into dx in logic level 
.........
dx[19] = ( V(d19) > vt_d ); // from bit 0 to bit 19
err = 0; // set sum of error bits to be zero for 1st set comparison    
for ( i = 0 ; i < 30 - input_bits ; i = i + 1 ) begin

p[i] = p[i + input_bits]; 
d[i] = d[i + input_bits]; 
e[i] = ( d[i] != p[i] );  
err = err + e[i];

end
for ( i = 30 - input_bits ; i < 30 ; i = i + 1 ) begin  

p[i] = ( p[i - prbs_bit] + p[i - prbs_fbb] ) % 2;     
d[i] = dx[i - 30 + input_bits]; 
e[i] = ( d[i] != p[i] );
err = err + e[i];

end
end
if (err > 0) begin

errx = 0; // set sum of error bits to be zero for 2nd set comparison
for ( i = 0 ; i < prbs_bit ; i = i + 1 ) begin

px[i] = d[i];                                
ex[i] = ( d[i] != px[i] );
errx = errx + ex[i];                         

end
for ( i = prbs_bit ; i < 30 ; i = i + 1 ) begin

px[i] = ( px[i - prbs_bit] + px[i - prbs_fbb] ) % 2; 
ex[i] = ( d[i] != px[i] );
errx = errx + ex[i];

end
if (errx == 0) begin 

for ( i = 0 ; i < 30 ; i = i + 1 ) begin
p[i] = px[i];
e[i] = ex[i];

end      
end
err = 0; // set sum of error bits to be zero for initial set comparison 
if ( ( ct - st ) >= ts_ebc ) begin

for ( i = 0 ; i < input_bits ; i = i + 1 ) begin
eb_cnt = eb_cnt + e[ 30 - input_bits +  i ]; // counting error bits

end
end

end      
V(e00) <+ transition(voh*e[30-input_bits+ 0]

+vol*!e[30-input_bits+ 0],td_e,tr_e,tr_e);
.........                                                       
V(e19) <+ transition(voh*e[30-input_bits+19]

+vol*!e[30-input_bits+19],td_e,tr_e,tr_e);
V(ebc) <+ transition(eb_cnt, td_e, tr_e, tr_e);
.........  

Figure 5.  Verification model of the bit error checker. 

          Overall system-level performance is evaluated 
through a top-level verification.  The first step of system-
level verification is to check the interconnection of compo-
nents and the overall functionality.  This step is often done at 
the transistor-level in order to make sure that the whole sys-
tem is working together and the physical layout has been 

done correctly.  However, a detailed system-level perform-
ance evaluation including jitter generation, jitter tolerance 
and bit error rate (BER) analysis is conducted using mixed-
mode or purely behavioral simulations [4].  Figure 5 shows 
an example of the bit error checker used in system-level veri-
fication. 

V. CONCLUSIONS 
In this paper, we have demonstrated the use of behavioral 

modeling with Verilog-AMS for the design and verification 
of high-speed wired links.  In the past, behavioral modeling 
was primarily used by a system architect in order to estimate 
overall system performance.  This paper extends the use of 
behavioral models to handle non-ideal input signal genera-
tion and associated design verification issues in order to ac-
count for these important real-world effects.  The ultimate 
goal of such behavioral modeling is to better ensure first-
pass functioning silicon.  Furthermore, behavioral models 
may be more easily reused in different design projects since 
their construction is not closely dependent on the details of a 
given process technology.   
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