
Modeling and Verification of High-Speed Wired Links
with Verilog-AMS

Ming-ta Hsieh
Department of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN 55455, USA

mthsieh@umn.edu

Gerald E. Sobelman
Department of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN 55455, USA

sobelman@umn.edu

Abstract—Behavioral modeling with virtual built-in self-test
verification of high-speed wired link designs is described in this
paper. Our procedure is based on principles of top-down
mixed-signal design combined with a behavioral description
language and mixed-mode simulations. The use of Verilog-
AMS is applied not only to circuit modeling but also for repre-
senting noise on the input signal. This approach provides sys-
tem-level jitter tolerance estimation, circuit critical path search
and overall design verification. Coding examples and simula-
tion results are included.

I. INTRODUCTION
The idea of top-down mixed-signal circuit design using a

behavioral description for system-level modeling has been a
topic of research interest [1-3]. Typically, system architec-
ture designers derive the required system or circuit specifica-
tion for certain targeted applications. On the other hand,
circuit designers would search for a type of circuit which is
the best fit for the required specifications with minimum
design cost and time and having superior performance. Be-
fore going ahead with the detailed transistor-level design,
behavioral models are usually used to verify the design at the
system level in order to determine which type of circuit has
the best performance. During the design process, transistor-
level circuits may be mixed with behavioral models for pur-
poses of performance evaluation. After completing each
transistor-level circuit design, the corresponded behavioral
circuit for each module is tweaked to match to its transistor-
level circuit performance. By the end of the design process,
a more thorough system-level interconnection check and
performance verification are executed. This final system–
level verification is done based on either mixed-mode or
fully behavioral simulations. The mixed-mode simulation
includes both transistor and behavioral modules which have
their critical path delays based on transistor-level extraction.
Of course, an accurate behavioral model is needed in order to
provide useful information for the total system-level verifica-
tion. A complete transistor-level system performance
evaluation is not practical due to the enormous simulation

time that would be required [4]. Using behavioral modeling
lets designers easily explore different system-level architec-
tures at the early design stages and thereby rapidly perform
system-level verification, Thus, including behavioral models
in the overall design process reduces time to market and
helps to ensure first time correct silicon.

Receiver
Input Buffer

with Equalizer

Clock
SynthesizerDeserializer

Clock and Data
Recovery

Parallel
Data Output

Parallel
Data Input

Reference
Clock Input

Transmission Channel

Transmitter
Output Buffer

with Pre-emphasis

Clock
SynthesizerSerializer

Parallel
Data Output

Parallel
Data Input

Reference
Clock Input

PRBS Data with
Jitter Modeling

Data Verification
Eye-Opening Monitoring

ISI, Random, and Sinusoidal
Jitter Generation

Clock w ith Jitter Modeling

Data Verification
Critical Path Detection

Transmitter
Output Buffer

with Pre-emphasis

Data Verification
Stability Analysis

Critical Path Detection

Data Verification
Error Bit Indication

Serializer

Receiver
Input Buffer

with Equalizer

Clock and Data
Recovery

Deserializer

Receiver
Input Buffer

with Equalizer

Clock
SynthesizerDeserializer

Clock and Data
Recovery

Parallel
Data Output

Parallel
Data Input

Reference
Clock Input

Transmission Channel

Transmitter
Output Buffer

with Pre-emphasis

Clock
SynthesizerSerializer

Parallel
Data Output

Parallel
Data Input

Reference
Clock Input

PRBS Data with
Jitter Modeling

Data Verification
Eye-Opening Monitoring

ISI, Random, and Sinusoidal
Jitter Generation

Clock w ith Jitter Modeling

Data Verification
Critical Path Detection

Transmitter
Output Buffer

with Pre-emphasis

Data Verification
Stability Analysis

Critical Path Detection

Data Verification
Error Bit Indication

Serializer

Receiver
Input Buffer

with Equalizer

Clock and Data
Recovery

Deserializer

Figure 1. Application of behavioral modeling to high-speed link design.

Figure 1 shows an example of the use of behavioral cir-
cuit models applied to high-speed wired link designs. The
behavioral models may also be used to generate inputs such
as clocks or PRBS data associated with jitter, to search for
internal critical paths, to verify correctness of data transmis-
sion with virtual build-in-self-test and so on. The ultimate

goal is not only to use the behavioral description to model
circuits for system-level verification but also to identify the
weak points in a system for subsequent analysis.

II. INPUT SIGNAL MODELING
In the real world, inputs are never ideal and are always

associated with some kind of noise. In the time domain, the
noise on clocks or input data is known as jitter. This section
demonstrates the use of behavioral modeling to generate
these non-ideal signals.

A. Clock with Jitter Modeling
………
@ (initial_step) begin
next = $abstime; // next time
vout = 0; // output logic
randseed = 1; // random number seed

end
$bound_step(tp); // bounded step
tj = $rdist_normal(randseed, 0, tj_sd); // Gaussian Jitter
@ (timer(next)) begin
vout = !vout;
tj = tj * ((abs(tj) >= tj_min) && (abs(tj) <= tj_max))

+ tj_min * (abs(tj) < tj_min)
+ tj_max * (abs(tj) > tj_max); // limit jitter in allowed range

tx = td + 10 * tp + tj; // clock edge time
next = next + tp; // next time

end
V(clkip) <+ transition(vh* vout+vl*!vout,tx+tp*0.0,tr,tf); // clkip
V(clkin) <+ transition(vh*!vout+vl* vout,tx+tp*0.0,tr,tf); // clkin
V(clkqp) <+ transition(vh* vout+vl*!vout,tx+tp*0.5,tr,tf); // clkqp
V(clkqn) <+ transition(vh*!vout+vl* vout,tx+tp*0.5,tr,tf); // clkqn
………

………
@ (initial_step) begin
next = $abstime; // next time
vout = 0; // output logic
randseed = 1; // random number seed

end
$bound_step(tp); // bounded step
tj = $rdist_normal(randseed, 0, tj_sd); // Gaussian Jitter
@ (timer(next)) begin
vout = !vout;
tj = tj * ((abs(tj) >= tj_min) && (abs(tj) <= tj_max))

+ tj_min * (abs(tj) < tj_min)
+ tj_max * (abs(tj) > tj_max); // limit jitter in allowed range

tx = td + 10 * tp + tj; // clock edge time
next = next + tp; // next time

end
V(clkip) <+ transition(vh* vout+vl*!vout,tx+tp*0.0,tr,tf); // clkip
V(clkin) <+ transition(vh*!vout+vl* vout,tx+tp*0.0,tr,tf); // clkin
V(clkqp) <+ transition(vh* vout+vl*!vout,tx+tp*0.5,tr,tf); // clkqp
V(clkqn) <+ transition(vh*!vout+vl* vout,tx+tp*0.5,tr,tf); // clkqn
………

Figure 2. Example of modeling a clock with random jitter.

The clock synthesizer module as shown in Figure 1 often
requires a reference clock input. This clock input normally
contains a certain amount of random jitter (RJ). [5] This RJ
information is needed when performing system-level versifi-
cation or clock-synthesizer design in a high-speed wired link.
For the other individual module designs such as the serializer
and clock data recovery (CDR) of Figure 1, the major con-
cern is the impact of jitter from the output clock of the syn-
thesizer. Reference [6] provides a detailed analysis of this
impact in high-speed serial links. An example of a clock
with RJ modeling is shown in Figure 2. RJ typically has a
Gaussian distribution. The magnitude of RJ is a function of

the desired bit error rate (BER) for the system. [7] The ex-
pected jitter magnitude and time interval for the RJ distribu-
tion are taken as inputs to generate the RJ in this example.

B. Data with Jitter Modeling
………
@ (initial_step) begin
seed = prbsseed % pow(2 , prbs_bit); // trim seed within prbs length
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = (seed >= pow(2 , i - 1)); // initialize prbs
seed = seed - bits[i] * pow(2 , i - i);

end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bits xor for bit0
next = $abstime; // next time
vout = bits[prbs_bit]; // output data logic
randseed = 1; // random number seed

end
$bound_step(tp);
rj = $rdist_normal(randseed, 0, rj_sd); // Gaussian rj
dj = $rdist_uniform(randseed, 0, dj_max) - dj_max/2; // Uniform dj
@ (timer(next)) begin
vout = bits[prbs_bit - 1]; // output data logic
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = bits[i - 1]; // prbs shift one bit
end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bit0 xor for bit0
rj = rj * ((abs(rj) >= rj_min) && (abs(rj) <= rj_max))

+ rj_min * (abs(rj) < rj_min)
+ rj_max * (abs(rj) > rj_max); // limit jitter in allowed range

tx = td + 10 * tp + rj + dj; // data edge time
next = next + tp; // next time

end
V(prbsp) <+ transition(vh* vout+vl*!vout,tx ,tr,tf); // prbsp
V(prbsn) <+ transition(vh*!vout+vl* vout,tx ,tr,tf); // prbsn
V(prbsdp) <+ transition(vh* vout+vl*!vout,tx+tdd,tr,tf); // prbsdp
V(prbsdn) <+ transition(vh*!vout+vl* vout,tx+tdd,tr,tf); // prbsdn
………

………
@ (initial_step) begin
seed = prbsseed % pow(2 , prbs_bit); // trim seed within prbs length
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = (seed >= pow(2 , i - 1)); // initialize prbs
seed = seed - bits[i] * pow(2 , i - i);

end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bits xor for bit0
next = $abstime; // next time
vout = bits[prbs_bit]; // output data logic
randseed = 1; // random number seed

end
$bound_step(tp);
rj = $rdist_normal(randseed, 0, rj_sd); // Gaussian rj
dj = $rdist_uniform(randseed, 0, dj_max) - dj_max/2; // Uniform dj
@ (timer(next)) begin
vout = bits[prbs_bit - 1]; // output data logic
for (i = prbs_bit ; i >= 1 ; i = i - 1) begin

bits[i] = bits[i - 1]; // prbs shift one bit
end
bits[0] = bits[prbs_bit] ^ bits[prbs_fbb]; // bit0 xor for bit0
rj = rj * ((abs(rj) >= rj_min) && (abs(rj) <= rj_max))

+ rj_min * (abs(rj) < rj_min)
+ rj_max * (abs(rj) > rj_max); // limit jitter in allowed range

tx = td + 10 * tp + rj + dj; // data edge time
next = next + tp; // next time

end
V(prbsp) <+ transition(vh* vout+vl*!vout,tx ,tr,tf); // prbsp
V(prbsn) <+ transition(vh*!vout+vl* vout,tx ,tr,tf); // prbsn
V(prbsdp) <+ transition(vh* vout+vl*!vout,tx+tdd,tr,tf); // prbsdp
V(prbsdn) <+ transition(vh*!vout+vl* vout,tx+tdd,tr,tf); // prbsdn
………

Figure 3. Example of modeling data having ISI and random jitter.

A bandwidth-limited transmission channel causes inter-
symbol interference (ISI) on data, while an imperfect clock
injects RJ into the data stream. Other jitter associated with
the data are cross-talk (XT) and duty-cycle distortion (DCD).
XT can be treated as a superposition of noise and signal.
DCD is a skewing of the pulse width. Both ISI and DCD are
part of deterministic jitter (DJ). A discussion of jitter associ-

ated with data can be found in Ref. [8] and behavioral
modeling of jitter is discussed in Ref. [9]. An example of
data having RJ and DJ is shown in Figure 3, which presents a
pseudorandom bit sequence (PRBS) data with a jitter genera-
tor. For the deserializer and the transmit driver designs, RJ
is typically the only type included. For the receiver input
and CDR design, however, both RJ and DJ should be con-
sidered.

III. SYSTEM AND CIRCUIT MODELING
System and circuit behavioral modeling allow designers

to explore different system architectures or circuit topologies
and make a quick feasibility analysis in the early stages of
design [10]. Moreover, behavioral modeling is often used to
prove the correctness of the fundamental theory and to esti-
mate the overall performance of the system before starting
the transistor-level design [3]. The goal is to provide an effi-
cient system-level or hierarchical mixed-mode design verifi-
cation platform.

A. System-Level Modeling
Behavioral modeling at the system-level often starts from

a functional description in order to provide an intuitive feel
for the signal flow from input to output as well as the overall
system functionality. For example, a high-speed serial link
starts with low-frequency parallel data sampled by a synthe-
sized clock and serialized into a stream of data. The serial-
ized data is then pre-emphasized and transmitted to the re-
ceiver through a bandwidth-limited channel. The receiver
needs to equalize the received signal in order to compensate
the high frequency spectrum loss before extracting the clock
and data from the CDR loop. Next, the extracted data is
sampled by the recovered clock and deserialized back into a
parallel set of signals. Once a preliminary behavioral model
has demonstrated the expected functional operation, then
non-ideal components for jitter described in Section II are
included to estimate jitter tolerance.

B. Circuit Level Modeling
Individual circuit modules below the system-level should

also be modeled using behavioral descriptions. Such a cir-
cuit model could be used as an input signal provider or an
output signal checker when running a transistor-level
performance simulation for a specific circuit block. On the
other hand, the circuit model may also be used for system-
level mixed-mode or purely behavioral design verification.

IV. DESIGN VERIFICATION
The design verification process may be divided into mod-

ule and system levels of performance evaluation It can be
classified as being either full behavioral, mixed-mode or a
complete transistor-level verification. Based on principles of
top-down mixed-signal design, the design description pro-
ceeds from top to bottom (i.e., system-level to circuit level),
and from purely behavioral to a purely physical level. On
the other hand, the verification process may run from bottom
to top and from physical to behavioral descriptions. Such a

performance evaluation process is called Bottom-Up
Verification [3].

A. Test Bench
We refer to a test bench based on behavioral modeling as

virtual built-in self-test (VBIST). The primary focus of
VBIST is to verify the designed physical circuit not only
under different process, voltage and temperature (PVT) con-
ditions, but also under extreme values of the input signals.
For example, the receiver input stage which includes an input
buffer, DC-restore and equalizer could have different output
responses based on an AC- or DC-coupled connection, the
input common-mode voltage, the degree of duty-cycle dis-
tortion and the magnitude of DJ and RJ. If the input buffer
gain and the equalizer frequency compensation are also vari-
able, there will be on the order of 10 variations to consider
during the analysis. The goal of VBIST is to create a test
vector generator based on behavioral models that can ac-
commodate all of these types of variations.

B. Critical Path Detector

Figure 4. Phase detector modeling and simulation.

The primary purpose of critical path detection is to iden-
tify the components which are most likely to degrade the
overall performance in a designed circuit or system. For
example, the phase detector (PD) in the CDR block samples
the input signal at the receiver input stage and often demulti-
plexes the sampled stream into two (or more) parallel output
signals [11]. One of the output signals may have a higher
probability of bit errors than the other signal. A critical path
detector must be able to identify the weaker path and the
location of the failing component. An example of such a
simulation is shown in Figure 4. Of course, the same con-

cepts can also be applied to serializer and deserializer design
verification.

C. System Level Verification
.........
@ (cross(V(clk) - vt_clk , 1)) begin

ct = $abstime; // get current time
dx[0] = (V(d00) > vt_d); // transfer input data into dx in logic level
.........
dx[19] = (V(d19) > vt_d); // from bit 0 to bit 19
err = 0; // set sum of error bits to be zero for 1st set comparison
for (i = 0 ; i < 30 - input_bits ; i = i + 1) begin

p[i] = p[i + input_bits];
d[i] = d[i + input_bits];
e[i] = (d[i] != p[i]);
err = err + e[i];

end
for (i = 30 - input_bits ; i < 30 ; i = i + 1) begin

p[i] = (p[i - prbs_bit] + p[i - prbs_fbb]) % 2;
d[i] = dx[i - 30 + input_bits];
e[i] = (d[i] != p[i]);
err = err + e[i];

end
end
if (err > 0) begin

errx = 0; // set sum of error bits to be zero for 2nd set comparison
for (i = 0 ; i < prbs_bit ; i = i + 1) begin

px[i] = d[i];
ex[i] = (d[i] != px[i]);
errx = errx + ex[i];

end
for (i = prbs_bit ; i < 30 ; i = i + 1) begin

px[i] = (px[i - prbs_bit] + px[i - prbs_fbb]) % 2;
ex[i] = (d[i] != px[i]);
errx = errx + ex[i];

end
if (errx == 0) begin

for (i = 0 ; i < 30 ; i = i + 1) begin
p[i] = px[i];
e[i] = ex[i];

end
end
err = 0; // set sum of error bits to be zero for initial set comparison
if ((ct - st) >= ts_ebc) begin

for (i = 0 ; i < input_bits ; i = i + 1) begin
eb_cnt = eb_cnt + e[30 - input_bits + i]; // counting error bits

end
end

end
V(e00) <+ transition(voh*e[30-input_bits+ 0]

+vol*!e[30-input_bits+ 0],td_e,tr_e,tr_e);
.........
V(e19) <+ transition(voh*e[30-input_bits+19]

+vol*!e[30-input_bits+19],td_e,tr_e,tr_e);
V(ebc) <+ transition(eb_cnt, td_e, tr_e, tr_e);
.........

.........
@ (cross(V(clk) - vt_clk , 1)) begin

ct = $abstime; // get current time
dx[0] = (V(d00) > vt_d); // transfer input data into dx in logic level
.........
dx[19] = (V(d19) > vt_d); // from bit 0 to bit 19
err = 0; // set sum of error bits to be zero for 1st set comparison
for (i = 0 ; i < 30 - input_bits ; i = i + 1) begin

p[i] = p[i + input_bits];
d[i] = d[i + input_bits];
e[i] = (d[i] != p[i]);
err = err + e[i];

end
for (i = 30 - input_bits ; i < 30 ; i = i + 1) begin

p[i] = (p[i - prbs_bit] + p[i - prbs_fbb]) % 2;
d[i] = dx[i - 30 + input_bits];
e[i] = (d[i] != p[i]);
err = err + e[i];

end
end
if (err > 0) begin

errx = 0; // set sum of error bits to be zero for 2nd set comparison
for (i = 0 ; i < prbs_bit ; i = i + 1) begin

px[i] = d[i];
ex[i] = (d[i] != px[i]);
errx = errx + ex[i];

end
for (i = prbs_bit ; i < 30 ; i = i + 1) begin

px[i] = (px[i - prbs_bit] + px[i - prbs_fbb]) % 2;
ex[i] = (d[i] != px[i]);
errx = errx + ex[i];

end
if (errx == 0) begin

for (i = 0 ; i < 30 ; i = i + 1) begin
p[i] = px[i];
e[i] = ex[i];

end
end
err = 0; // set sum of error bits to be zero for initial set comparison
if ((ct - st) >= ts_ebc) begin

for (i = 0 ; i < input_bits ; i = i + 1) begin
eb_cnt = eb_cnt + e[30 - input_bits + i]; // counting error bits

end
end

end
V(e00) <+ transition(voh*e[30-input_bits+ 0]

+vol*!e[30-input_bits+ 0],td_e,tr_e,tr_e);
.........
V(e19) <+ transition(voh*e[30-input_bits+19]

+vol*!e[30-input_bits+19],td_e,tr_e,tr_e);
V(ebc) <+ transition(eb_cnt, td_e, tr_e, tr_e);
.........

Figure 5. Verification model of the bit error checker.

 Overall system-level performance is evaluated
through a top-level verification. The first step of system-
level verification is to check the interconnection of compo-
nents and the overall functionality. This step is often done at
the transistor-level in order to make sure that the whole sys-
tem is working together and the physical layout has been

done correctly. However, a detailed system-level perform-
ance evaluation including jitter generation, jitter tolerance
and bit error rate (BER) analysis is conducted using mixed-
mode or purely behavioral simulations [4]. Figure 5 shows
an example of the bit error checker used in system-level veri-
fication.

V. CONCLUSIONS
In this paper, we have demonstrated the use of behavioral

modeling with Verilog-AMS for the design and verification
of high-speed wired links. In the past, behavioral modeling
was primarily used by a system architect in order to estimate
overall system performance. This paper extends the use of
behavioral models to handle non-ideal input signal genera-
tion and associated design verification issues in order to ac-
count for these important real-world effects. The ultimate
goal of such behavioral modeling is to better ensure first-
pass functioning silicon. Furthermore, behavioral models
may be more easily reused in different design projects since
their construction is not closely dependent on the details of a
given process technology.

REFERENCES
[1] R. Sommer et. al., “From System Specification to Layout: Seamless

Top-Down Design Methods for Analog and Mixed-Signal
Applications,” IEEE Proceedings 2002 Design, Automation and Test
in Europe Conference and Exhibition

[2] P. Muller, A. Tajalli, M. Atarodi, and Y. Leblebici, “Top-down
design of a low-power multi-channel 2.5-Gbit/s/channel gated
oscillator clock-recovery circuit,” IEEE Proceedings 2002 Design,
Automation and Test in Europe Conference and Exhibition

[3] K. Kundert, “Principles of Top-Down Mixed Signal Design,” The
Designer’s Guide Community http://www.designers-guide.org, 2003

[4] M. Wang, H. Maramis, D. Telian, and K. Chung, “ New Techniques
for Designing and Analyzing Multi-GigaHertz Serial Links,”
DesignCon 2005.

[5] C. Skach, “Signals predict Serdes jitter behavior,” EE Times Asia,
http:// www.eetasia.com, May 16, 2005.

[6] P.K. Hanumolu, B. Casper, R. Mooney, G. Wei, and U. Moon,
“Analysis of PLL clock jitter in high-speed serial links,” IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, Vol.50, No.11, November 2003, pp. 879-886.

[7] M.A. Kossel and M.L. Schmatz, “Jitter Measurements of High-Speed
Serial Links,” IEEE Design and Test of Computers, Volume 21, Issue
6, pp. 536 – 543, No-vember 2004

[8] Lattice Semiconductor Corporation “Technical Note TN1084:
SERDES Jitter,” Lattice Semiconductor Corpo-ration, March 2, 2005.

[9] M. Hsieh and G. Sobelman, “Accurate Prediction of Jitter Tolerance
in High-Speed Serial Links,” to appear in International SoC Design
Conference, 2005.

[10] B.Antao, F. El-Turky, and R. Leonowich, “Mixed-mode simulation of
phase-locked loops,” IEEE 1993 Custom Integrated Circuits
Conference, 9-12 May 1993, pp. 8.4.1 - 8.4.4

[11] A. Rezayee, and K. Martin, "A 9-16Gb/s Clock and Data Recovery
Circuit with Three state Phase De-tector and Dual-Path Loop
Architecture," Proceedings of the 2003 European Solid-State Circuits
Conference, Estoril, Portugal, pp. 683-686.

