
NIUGAP: Low Latency Network Interface

Architecture with Gray Code for Networks-on-Chip

Daewook Kim, Manho Kim and Gerald E. Sobelman

Department of Electrical and Computer Engineering

University of Minnesota, Minneapolis, MN 55455 USA

Email: {daewook,mhkim,sobelman}@ece.umn.edu

Abstract— The implementation of a high-performance
network-on-chip (NoC) requires an efficient design for the
network interface unit (NIU) that connects the switched
network to the IP cores. In this paper, we present a novel NIU
architecture that utilizes a Gray code based packet reordering
methodology to achieve low latency packet processing. The
proposed architecture has been implemented with VHDL and
synthesized using a 0.25 µm ASIC technology. Simulation results
verify the functionality of the architecture and show that it can
save a substantial amount of packet processing time compared
to the conventional reordering scheme.

I. INTRODUCTION

The increasing complexity of systems-on-chip (SoC) to-

gether with the wiring problems of advanced IC technologies

make networks-on-chip (NoCs) a promising replacement for

buses and dedicated interconnect [1]. The major components

of an NoC are switches, which transport data from one place to

another, and network interface units (NIU), which implement

the interface between IP cores and switches, as shown in

Figure 1. The main functions of an NIU are data packetization

(packet assembly), depacketization (packet disassembly), end-

to-end flow control with scheduling for buffer overflow and

protocol coherence between interconnected modules.

Some previous papers have discussed how to implement a

packet reordering mechanism in other networking areas, such

as in ATM parallel switching [2]–[4]. There are two de facto

packet reordering standards widely adopted in current network

designs. The first uses sequence numbers [2] and the second

uses a time stamp [3]. In [2], an implementation is described

using sequence numbers in an ATM switch, along with an

assessment of its performance under simulated traffic. Henrion

et al in [3] presents a time stamp scheme to address the

problems, which requires constant time to process each packet.

However, all of the above mechanisms require packets to be

saved first and reordered in the switch output buffers before

departing to the next destination and the packet reordering

methodologies depend on the time sequence represented by a

binary-coded decimal (BCD) code. Several comparison steps

are necessary between packets to obtain the correct packet

order, which causes a serious processing time overhead. That

methodology can be appropriate for computer networks like

LAN and WAN to link hundreds of switches in a large-

scale network. However, those mechanisms are not appropriate

for the on-chip switched network platform since the switch

overhead in terms of area and packet processing latency

have to be minimized as much as possible. Therefore, packet

reordering methodologies must be reconsidered for application

to an NoC platform. Some researchers have described the

functions and importance of their NIUs for macro-networks

such as LANs and WANs [5], [6]. Other works [7], [8] discuss

NoC-specific NIUs but have not yet sufficiently addressed the

issue of lower latency data transactions.

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s

s

s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s
 s
 s
 s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s
 s
 s
 s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s
 s
 s
 s

Core

NIU

Core

NIU

Core

NIU

Core

NIU

s
 s
 s
 s

(a)
 (b)

Fig. 1. NoC topologies with NIU. (a) 2D mesh. (b) Butterfly fat tree.

In this paper, we propose a novel network interface architec-

ture called NIUGAP, Network Interface Unit with GrAy code

Packet reordering. Our model includes a packet reordering

function in the NIU which minimizes the switch packet

reordering overhead. In particular, the NIUGAP utilizes a

proposed Gray code based novel packet reordering scheme

to minimize the packet reordering overhead.

The proposed architecture has been implemented with

VHDL and synthesis was performed using the Synplify ASIC

3.3 tool with the Chip Express CX4000 structured ASIC

library for 0.25 µm technology. Simulation results verify the

functionality of the architecture and show that the proposed

Gray code based NIU architecture can save significant packet

processing time compared to the conventional packet reorder-

ing schemes.

II. PACKET REORDERING WITH GRAY CODE

A Gray code is an ordered binary code in which two

successive values differ in exactly one bit position. It was

originally proposed as a way to prevent spurious outputs

from electromechanical switches [9] but has seen widespread

application in many applications. In the transition between two

states as shown in Figure 3, all three switches change state.

In the brief period while all are changing, the switches will

read some spurious position and the transition might look like

Processor

- SRC & DST address bits.

- Control bits.

-
Gray code
 generation.

- Iterative time threshold.

Packet header
 Packet sequence number

Packet reorder selector

with
 Gray code
 comparator

On-Chip Switch

Asyncchnous

FIFO

Asyncchnous

FIFO

Incoming

data bit-stream

buffer pool

Packetizer

Outgoing

packet

buffer pool

Incoming

packet buffer

Outgoing

data bit-stream

buffer pool

Depacketizer:

Packet to bit-stream converter

Gray code

packet reorder

controller

Processor

Clock

NIU Clock

req
 acq
 req
 acq

req
acq

req
 acq

Reordered (in-order)

packet buffer

Out-of-order

packet buffer pool

Packet

In

Packet

Out

Bit-stream

Out

Bit-stream

In

Bit-stream In

Scheduler

Bit-stream Out

Scheduler

Packet In

Scheduler

Packet Out

Scheduler

NIUGAP_PO

Module

NIUGAP_PI

Module

Fig. 2. NIUGAP architecture block diagram.

011-001-101-100. When the switches appear to be in state

001, the observer cannot tell if that is the intended state or

merely a transitional state between two other states. A Gray

code eliminates this problem by changing only one bit at a

time, so there is never any ambiguity about the intended state.

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 1 1

1 0 1

1 0 0

Gray Code I

0 0 0

0 0 1

0 1 1

0 1 0

1 1 0

1 0 0

1 0 1

1 1 1

Gray Code II

0 0 0

0 1 0

0 1 1

0 0 1

1 0 1

1 0 0

1 1 0

1 1 1

Gray Code III

0 0 0

0 1 0

0 1 1

0 0 1

1 0 1

1 1 1

1 1 0

1 0 0

Gray Code IV

(a)
 (b)
 (c)
 (d)

Fig. 3. Various Gray code sets.

As shown in Figure 3, the last state can roll over to the first

state with only one switch change. This is called the ”cyclic”

property of a Gray code. Several sets of Gray code can be

generated having the feature of single bit change. We adopted

the pattern of Figure 3(a) because it follows a regular change

pattern in its transitions. The most common Gray code, as

shown in Figure 3(a), is a reflected code where a bit in any

column except the MSB is symmetric about the sequence mid-

point. This means that the second half of the Gray code is

a mirror image of the first half. A good way to visualize

the coding is by noting that the least significant bit follows

a repetitive pattern of 2: 11, 00, 11 etc. The second digit

follows a pattern of 4. Therefore, we can utilize the regular

pattern of Gray code transition to check for an in-order packet

arrival sequence quickly by monitoring single bit changes with

an XOR check and a repetitive pattern of the reflected Gray

code set, which prevents other disordered Gray codes with

the same Hamming distance of 1 from being regarded as the

expected correct code. Figure 4 shows the 4-bit BCD code for

16 decimal digits and the logic for converting from BCD code

to Gray code.

III. NIUGAP ARCHITECTURE

NIUGAP is a network interface architecture specifically

designed for NoCs which achieves fast packet reordering

through the use of a Gray code. Figure 2 shows the overall

block diagram of the proposed NIUGAP architecture.

A. NIUGAP PO Module

As shown in the NIUGAP Packet Out (NIUGAP PO) mod-

ule in Figure 2, all bit-stream data that is generated from

the processor is entered into the NIU by synchronizing the

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 1

0 0 1 0

0 1 1 0

0 1 1 1

0 1 0 1

0 1 0 0

1 1 0 0

1 1 0 1

1 1 1 1

1 1 1 0

1 0 1 0

1 0 1 1

1 0 0 1

1 0 0 0

BCD Code
 Gray Code
Decimal

Digit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(X
3
 X
2
 X
1
 X
0
)
 (Y
3
 Y
2
 Y
1
 Y
0
)

X
3

X
2

X
1

X
0

Y
3

Y
2

Y
1

Y
0

MSB

LSB

Fig. 4. BCD code to Gray code conversion.

processor clock with the NIU clock through an asynchronous

FIFO. The synchronized bit-stream data is saved in the incom-

ing data buffer pool, and then every fixed number of bits are

assembled into the packet format. Packet header information

such as source address, destination address and control bits are

added to the actual payload for packet routing. Furthermore,

an m-bit time tag and an n-bit sequence tag represented by

the Gray code are also added to the header information for

the purpose of packet reordering at the destinations. We can

reuse every n-bit reflected Gray code recursively by changing

the m-bit time tag offset, which is used for the iterative

time offset for packet transmission. All generated packets are

temporarily saved in the outgoing packet buffer pool, and then

each scheduled packet is transmitted to the on-chip switch by

maintaining a simple req/ack protocol. Figure 5 shows the

logic block diagram for the n-bit recursive Gray code counter

we propose. The Gray code counter changes its contents on

every clock pulse. Often it is desirable to be able to inhibit

counting, so that the count remains in its present state. This

may be accomplished by including an Enable control signal.

Connecting the Enable signal to the first AND gate chain

means that if Enable=0, then all T inputs will be equal to

0. If Enable=1, then the counter operates normally. In many

cases, it is necessary to start with the count equal to zero. This

is easily achieved if the flip-flops can be cleared.

B. NIUGAP PI Module

The NIUGAP Packet In (NIUGAP PI) module in Figure 2

shows the detailed data flow of incoming packets out of the on-

chip switch to the processor in a bit-stream format. Incoming

packets from the on-chip switch are saved in the incoming

packet buffer temporarily, and then the packets are moved to

the Gray code packet reorder controller block. The proposed

packet reordering based on a Gray code is performed in that

block. Reordered packets are sent to the depacketizer for

packet to bit-stream conversion. All disassembled bit-streams

are saved in the outgoing bit-stream buffer pool, and then

those are transmitted to the processor by synchronizing the

clock through an asynchronous FIFO with a req/ack protocol.

Figure 6 describes the functional operations of the Gray code

packet reorder controller. The m-bit time tag field of the packet

.

.

.

Clock
 X
0

T
 Q

Q

T
 Q

Q

T
 Q

Q

T
 Q

Q

.

.

.

.

.

.

.

.

.

.

.

.

X
1

X
2

X
n

Y
0

Y
1

Y
2

Y
n

.

.

.

Enable

Clear

(LSB)

(MSB)

Fig. 5. Gray code counter block diagram.

header indicates any time threshold offset given when a set

of packets are generated from the source during some time

interval. The time tag field is also represented by a Gray

code. The sequence tag field is for the sequential Gray code

generated during the corresponding time tag. An iterative n-bit

Gray code is generated and added onto the packet header every

new time tag. Therefore, we can also reorder the out-of-order

packets that have the same sequence tag by checking the time

tag information, although this would be a very unusual case.

The packet headers that include a Gray code based time tag

and sequence tag are compared by the Gray code comparator

checking for a single bit change and a regular transition pattern

of a Gray code set as described above. When the expected

packets or retransmission packets arrive late, those can take

the bypass path for preferential packet transition to avoid

performance degradation.

IV. EXPERIMENTAL RESULTS AND PERFORMANCE

ANALYSIS

We present the implementation results for an RTL-based NI-

UGAP architecture. We have used the Chip Express CX4000

structured ASIC library for 0.25µm technology, and syn-

thesized with the Synplify ASIC 3.3 tool. The architecture

overhead is determined in terms of gate count and area. The

design was successfully simulated and verified with the Mod-

elSim simulator using the post-synthesis netlist and randomly

generated packet patterns. Table I provides values for the total

packet transmission latency for the 88-bit packet size (3-bit

Gray coded time tag, 12-bit Gray coded sequence tag, 3-bit

BCD coded SRC, 3-bit BCD coded DST, 3-bit BCD coded

control bit, and 64-bit BCD coded payload fields). We present

the optimal estimated frequency for the packet size that avoids

negative slack from the synthesis netlist.

Figure 7 and Figure 8 presents the average packet latency

comparison for the Gray code based packet reordering vs. the

typical BCD code based packet reordering methodology by

varying the size of time tag plus sequence tag fields of the

Packet in-order

selector with

Gray code

sequence

comparator

(Cyclic pointer

&

Timing

Threshold)

Reordered (in-order)

packet FIFO buffer

Out-of-order packet buffer pool

Time

tag

Sequence

tag

SRC

address

DST

address

Control

bits

Payload bits

Time

tag

Sequence

tag

SRC

address

DST

address

Control

bits

Payload bits

Time

tag

Sequence

tag

SRC

address

DST

address

Control

bits

Payload bits

Time

tag

Sequence

tag

SRC

address

DST

address

Control

bits

Payload bits

.

.

.

.

.

.

.

.

.

Iterative intra-packet

XOR
 comparison

(Hamming distance = 1)

In-order

packets

out

Bypass for

retransmission packet

req_retrans
 acq_retrans

Bypass packet

FIFO buffer

Fig. 6. Gray code packet reordering controller block diagram.

TABLE I

SYNTHESIS AREA AND TIMING REPORT

0.25µm ASIC Technology

Components Gate Area Optimal Estimated

count Overhead Frequency

NIUGAP PO Module 2644 2718.6 µm2 46.8 MHz

NIUGAP PI Module 5342 16583.4 µm2 46.8 MHz

 0

 50

 100

 150

 200

 250

1513117

T
u
rn

 A
ro

u
n
d
 P

ac
k
et

 L
at

en
cy

 [
n
s]

Size of ’time tag + sequence tag’ field [bits]

Gary coded packet reordeing in NIUGAP
BCD coded packet reordering in NIUGAP

Fig. 7. Packet latency for NIU.

 0

 200

 400

 600

 800

 1000

 1200

1513117

T
u
rn

 a
ro

u
n
d
 P

ac
k
et

 L
at

en
cy

 t
h
ro

u
g
h
 s

w
it

ch
es

 [
n
s]

Size of ’time tag + sequence tag’ field [bits]

Gary coded packet reordeing in SW buffer
BCD coded packet reordering in SW buffer

Fig. 8. Packet latency through
switches.

packet. Figure 7 shows the latency overhead performed inside

NIUGAP block. Figure 8 presents the corresponding latency

overhead that is executed by adapting the two mechanisms

into the switch output buffer as used in macro-networks. The

latency was calculated for the overall delay time through

two switches. The simulation results show the proposed Gray

coded packet reordering methodology outperforms in both

cases the conventional BCD coded methodology.

V. CONCLUSIONS

We have presented a novel on-chip NIU architecture that

utilizes a Gray code based packet reordering methodology for

the purpose of low latency packet processing. The proposed

architecture has been implemented with VHDL and synthe-

sized using a 0.25 µm ASIC technology. The simulation results

verify the function of the architecture and show that the pro-

posed Gray code based NIU architecture can save significant

packet processing time compared to the conventional packet

reordering scheme.

ACKNOWLEDGMENTS

We thank Sangwoo Rhim, Bumhak Lee, and Euiseok Kim

of the SAMSUNG Advanced Institute of Technology (SAIT)

for their help with this manuscript. This research work is

supported by a grant from SAIT.

REFERENCES

[1] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: a scalable,
communication-centric embedded system design paradigm,” in IEEE

Proc. of 17th International Conference on VLSI Design, Jan 2004, pp.
845–851.

[2] J. Turner, “Resequencing cells in an ATM switch,” Washington University,

Computer Science Department, WUCS-91-21.
[3] M. Henrion, “Resequencing system for a switching node,” U.S. Patent

#5,127,000.
[4] I. Keslassy and N. McKeown, “Maintaining packet order in two-stage

switches,” in INFOCOM 2002. Twenty-First Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings, Feb
2002, pp. 1032–1041.

[5] P. Sundstrom and P. Andersson, “ATM network interface architectures for
low latency,” in IEEE Computer Communications and Networks, 1997.

Proceedings., Sixth International Conference on, Jan 1997, pp. 494–499.
[6] R. Osborne, Q. Zheng, J. Howard, R. Casley, D. Hahn, and

T. Nakabayashi, “Dart - a low overhead ATM network interface chip,” in
Proc. Hot Interconnects, Sep 1996, pp. 587–593.

[7] A. Radulescu, J. Dielissen, S. Pestana, O. Gangwal, E. Rijpkema,
P. Wielage, and K. Goossens, “An efficient on-chip NI offering guaranteed
services, shared-memory abstraction, and flexible network configuration,”
vol. 24, Jan 2005, pp. 4–17.

[8] P. Pande, C. Grecu, A. Ivanov, R. Saleh, and G. D. Micheli, “Design,
synthesis, and test of networks on chips,” in IEEE Proc. of Design and

Test of Computer, March 2005, pp. 404–413.
[9] F. Gray, “Pulse code communication,” U.S. Patent #2,632,058.

