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Abstract— Fast Fourier transform (FFT) algorithms are used
in a wide variety of digital signal processing applicationsand
many of these require high-performance parallel implemen-
tations. We present two methodologies for mapping an FFT
computation onto a CDMA-based star topology network-on-chip
(NoC) architecture. These implementations reduce the FFT data
shuffling time and simplify the data flow between processing
elements. The design has been modeled using SystemC and the
simulation results provide throughput and latency performance
metrics for the different mapping scenarios.

I. I NTRODUCTION

Many prior approaches for parallel FFT implementation
have been proposed, such as a two-dimensional (2D) mesh
array [1] and the perfect shuffle network [2]. While these
designs have various advantages, they also have limitations
when scaled up to large-size transforms. For example, the
size of the 2D mesh array increases in proportion to size of
the transform [1]–[3]. Although large FFT calculations canbe
folded onto smaller-size meshes, this is achieved at a cost of
complex, overlapped communication between processing ele-
ments (PEs). Moreover, the inter-PE communication combined
with the data loading/unloading time can become a bottleneck
and may dominate the execution time.

In this paper, we consider the application of a network-
on-chip (NoC) to the problem of parallel FFT computations.
In other words, we consider a multi-processor system-on-
chip (SoC) in which the PEs are interconnected using an
NoC to obtain a high-throughput parallel FFT implementation.
Several different types of NoC architectures [4]–[9] have
been proposed to overcome the bandwidth limitations of bus
based interconnections, and each one has a particular set
of performance limitations and overhead characteristics.For
example, the number of switches required in a mesh structure
increases with an increasing number of PEs, which leads to
greater area overhead and power consumption. In addition,
complex routing algorithms through the network of switches
may be necessary to achieve good performance, which also
has an adverse impact on area and power.

The architecture proposed in this paper originated from the
desire to address these issues. In this study, we utilize an NoC
architecture that is based on code division multiple access
(CDMA) techniques [10]. CDMA has been widely used in
wireless communications networks because of its bandwidth
capacity and multi-user features, but it has only rarely been

applied in the context of a wired network. The CDMA-based
NoC architecture utilizes the orthogonality property of Walsh
codes to route data packets from source to destination. An
attractive aspect of the CDMA-based NoC is that the inter-
PE communication is accomplished using a small number of
switches, in some cases just a single switch. In the remainder
of this paper, we will show how FFT algorithms can be
mapped onto this NoC architecture and give simulation results
for throughput, latency and computational response time.

II. N ETWORK-ON-CHIP ARCHITECTURE

A CDMA-based star network topology which can accom-
modate up to 8 PEs is shown in Fig. 1. If a larger number of
PEs are needed then a hierarchical star network topology can
be formed consisting of a central switch connected to a set of
local switches, where a set of PEs are connected to each local
switch [10]. The number of PEs attached to a switch dictates
the required length of the Walsh codewords that are used. Two
important design simplifications can be applied for the caseof
FFT computations.
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Fig. 1. CDMA-based star topology NoC architecture.



First, there will not be any packet address contention issues
because the result of each PE is sent to a different destination
PE according to the FFT data-flow diagram. Second, we don’t
have to consider the case in which a PE has no data to send
since the regularity of the FFT computation ensures that each
PE will be continuously utilized. Packets are composed of
three fields, consisting of the source address, the destination
address and the payload. Each data value is loaded into the
payload field as a serial bit stream.

For concreteness, we consider the specific example of a 16-
point FFT. Each of the 8 PEs of Fig. 1 is capable of computing
4 butterflies, either in parallel or in sequence, depending on
the mapping methodology that is used. The spreading code
used in our design is an 8-chip orthogonal Walsh code which
provides sufficient codeword orthogonality to allow the 8 PEs
to simultaneously communicate with each other.

A. Transmitter (TX) and Modulator (MOD)

The TX block receives a packet from a buffer and examines
its destination address. This information is used to choosethe
appropriate Walsh codeword that corresponds to the required
destination. If L-bit codewords are used, we can assign each
of the L-1 non-zero codewords to each of L-1 PEs, with the
all-zero codeword reserved for the “no data sent” case. The
corresponding modulation rule is given in Table I. On the other
hand, when we have an application such as the FFT in which
that case does not arise, then the all-zero codeword can also
be assigned to one of the PEs so that an L-bit codeword can
support up to L PEs.

TABLE I

MODULATION ALGORITHM

Data Codeword Assignment
0 Codeword itself
1 Inverted codeword

No data All-zero codeword

B. Demodulator (DEMOD) and Receiver (RX)

The demodulator recovers the original data by computing
a summation and then applying a decision rule. The demod-
ulation algorithm uses a decision factor calledλ, which is
a modification of a previously proposed scheme [11] that is
designed to work with Walsh codewords.

The mathematical equations and algorithms necessary for
demodulation are summarized in the equations below together
with the decision rule of Table II.

D[i℄ =((2S[i℄�L) if codeword[i] is 0(�2S[i℄+L) if codeword[i] is 1
(1)

λ = L�1

∑
i=0

D[i℄
L

(2)� S[i] is the summation of all modulated values.� L is the codeword length.� D[i] is the decision variable.

� λ is the decision factor.� 0� i � L�1(i : integer)
TABLE II

DEMODULATION ALGORITHM

Decison Factor(λ) Demodulated Data[bit]
+1 1
-1 0
0 No data sent

Table III gives a numerical example of the modulation and
demodulation process. Suppose that PE 5 wishes to send a
data value 0 to PE 3. The assigned codeword [0 0 1 1 0 0 1
1] itself is used because the transmitted data is 0 in this case.
The other PEs also send 0 or 1 simultaneously in a similar
manner. In this example, the S[i] values are [3 3 3 7 5 5 5 5].
The only information that the demodulator associated with a
PE knows are S[i] and its assigned codeword. Each digit of
S[i] is doubled, which results in [6 6 6 14 10 10 10 10]. The
decision variable D[i] outputs values that correspond to each
digit of original codeword, which results in [-2 -2 2 -6 2 2 -2
-2]. Therefore, we can see that the decision factorλ results in
-1 for destination 3. This indicates that the recovered databit
is 0, which is precisely the value that was sent from source 5.

TABLE III

DEMODULATION EXAMPLE

src src dst mod original λ rcv dst
no data no codeword codeword data no

1 1 8 10010110 00000000 +1 1 1
2 0 5 00001111 01010101 -1 0 2
3 0 6 01011010 00110011 -1 0 3
4 0 2 01010101 01100110 +1 1 4
5 0 3 00110011 00001111 -1 0 5
6 1 1 11111111 01011010 -1 0 6
7 1 4 10011001 00111100 -1 0 7
8 0 7 00111100 01101001 +1 1 8

Summation(S[i])=[3 3 3 7 5 5 5 5]

III. M APPING THEFFT ONTO THE NOC

We consider the case of mapping a 16-point, radix-2,
decimation-in-frequency (DIF) FFT algorithm onto the pro-
posed CDMA NoC architecture. The entire computation can
be divided into three parts. First, a preprocessing step is
responsible for loading the input data. Then, the FFT com-
putation is performed by the network of PEs. All PEs accept
new input data in a parallel and pipelined fashion and all
data transmission between source and destination PEs are
executed concurrently through the CDMA switch. Finally,
postprocessing is responsible for storing the computationre-
sults. Each value is represented as a signed 16-bit fixed point
number with 10 fractional bits. Once an FFT computation has
been performed, the block writes the transform values to the
destination PEs.

In the following two subsections, we propose and compare
two different FFT mapping methodologies for use with this
CDMA star topology NoC.



A. Direct Mapping

An N-point FFT requires log2N stages with N/2 butterfly
operations at each stage. Fig. 2(a) shows the direct mapping
technique for a 16-point DIF FFT onto 8 PEs, where each PE
is capable of computing 4 butterflies. While the computations
on processors PE3 through PE8 are done independently, the
computations in PE1 and PE2 share the same input data.
The inter-PEs data flow of the direct mapping technique
is PE1!PE3!PE5!PE7 and PE2!PE4!PE6!PE8. The
loading of input data and the inter-PEs data communication
are executed in a pipelined manner for maximum throughput.
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Fig. 2. (a) Direct mapping and (b) Indirect mapping.

B. Indirect Mapping

The proposed indirect mapping is to divide the overall com-
putation task according to a set of 8 virtual data paths as shown
in Fig. 2(b). One pair of input paths extends horizontally along
the data-flow graph and comprises one virtual level. In this
scheme, each PE iteratively computes a butterfly four times
along each of the 8 virtual data paths. This type of partition
has an area advantage as the size of the FFT increases, as
shown in Table IV.

Note that the number of PEs used in a mesh array is
the same as the number of points N in the FFT, while the
indirect mapping technique requires only half of this number.
The number of stages increases by one when the number of
FFT points is doubled. The details of the indirect mapping
algorithm are best described using an example. Consider the

TABLE IV

NUMBER OF PES COMPARISON

FFT Point Mesh Direct Indirect
(N) Array [1] Mapping Mapping
16 16 8 8
32 32 20 16
64 64 48 32
128 128 112 64

first level L(0) assigned to PE1 in Fig. 2(b). As shown in Fig.
3, we trace the dataflow until PE1 obtains its final computation
result. In stage I, PE1 computes the initial input data pair in0
and in1 with input data in8 and in9 from PE5. Since we already
know the previously assigned values of variables a, b, c, andd
from the FFT algorithm, the PE1 result is updated iteratively
for the input value of the next stage, as shown in Fig. 3.
Continuing in this manner, PE1 obtains its final computation
values for x(0) and x(8) during stage IV.
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Fig. 3. Dataflow of indirect mapping.

IV. SIMULATION RESULTS AND ANALYSIS

We have simulated and analyzed the network performance
of the direct and indirect FFT mapping methodologies us-
ing SystemC. We assume that the on-chip communication
is synchronous and runs at the same speed as a PE, and
also that the computational load has been equally distributed.
The performance metrics that we have analyzed are latency,
maximum throughput, average throughput, network utilization
and computation response time, which are inter-related as
follows:

Latency= Packet trasmission delay (3)

Max:throughput= data trans f erred between nodes
Latency

� Imax (4)



Avg:throughput= data trans f erred between nodes
Latency

� Iavg (5)

Network utilization= Average throughput
Maximum throughput

(6)

Response time= Elapsed time o f one FFT computation(7)

whereImax and Iavg are the maximum and average number of
simultaneous data transfers, respectively. Note that throughput
may also be interpreted as the aggregate bandwidth of the
network.

In our simulations, we set the switch system clock period
to L times the codeword clock, i.e.Tsysclk= L �Tcodeclk and
the switch operates at 64 MHz. The demodulator outputs the
recovered data after some latency depending on the size of the
packet payload. Fig. 4 shows the simulation results for these
four performance metrics as a function of the packet payload
size. From part (a) we can see that the latency increases for
increased packet sizes, as expected, and that both the direct and
indirect mapping methods give the same values for this metric.
Parts (b), (c) and (d) show that throughput and response time
increase with increasing packet size. Moreover, throughput is
higher with the indirect mapping method at the expense of
increased response time. This longer response time is due
to the data dependencies that exist in the indirect mapping
approach, as described earlier.
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Fig. 4. Simulation results: (a) Latency[µsec], (b) Max. through-
put[Mbytes/sec], (c) Avg. throughput[Mbytes/sec], and (d) Computation re-
sponse time[µsec].

V. CONCLUSIONS

In this paper, the mapping of a parallel FFT algorithm onto
a CDMA-based star topology network-on-chip architecture
has been presented. Walsh codes are used to modulate the
packet data and the data communications between processing
elements occurs concurrently without interference. Two map-
ping methodologies have been devised for allocating the PEs
to portions of the FFT data-flow diagram. Simulations have
been performed using SystemC and the results show the rela-
tionships between various performance metrics. In our future
work, we plan to model and synthesize an MPEG-4 system
based on our CDMA-based NoC platform. We also plan to
investigate the use of sophisticated scheduling algorithms to
ensure fairness and to achieve guaranteed throughput.
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